CLASS QUIZ: NOVEMBER 4: INTEGRATION

MATH 152, SECTION 55 (VIPUL NAIK)

You	name (print clearly in capital letters):
(1)	Which of the following is an antiderivative of $x \cos x$? (A) $x \sin x + \cos x$ (B) $x \sin x - \cos x$ (C) $-x \sin x + \cos x$ (D) $-x \sin x - \cos x$ (E) None of the above
(2)	(*) Suppose F and G are two functions defined on \mathbb{R} and k is a natural number such that the k^{tl} derivatives of F and G exist and are equal on all of \mathbb{R} . Then, $F-G$ must be a polynomial function What is the maximum possible degree of $F-G$? (Note: Assume constant polynomials to have degree zero) (A) $k-2$ (B) $k-1$ (C) k (D) $k+1$ (E) There is no bound in terms of k . Your answer:
(3)	(**) Suppose f is a continuous function on \mathbb{R} . Clearly, f has antiderivatives on \mathbb{R} . For all but one of the following conditions, it is possible to guarantee, without any further information about f , that there exists an antiderivative F satisfying that condition. Identify the exceptional condition (i.e., the condition that it may not always be possible to satisfy). (A) $F(1) = F(0)$. (B) $F(1) + F(0) = 0$. (C) $F(1) + F(0) = 1$. (D) $F(1) = 2F(0)$. (E) $F(1)F(0) = 0$.

(4	1)	(**)	Suppose	F(x) =	$\int_0^x \sin^2 x$	$(t^2) dt$	and G	f(x) =	$\int_0^x \cos^2($	$(t^2) dt$.	Which of the	following is	s true?
----	----	------	---------	--------	---------------------	------------	---------	--------	--------------------	--------------	--------------	--------------	---------

- (A) F + G is the zero function.
- (B) F + G is a constant function with nonzero value.
- (C) F(x) + G(x) = x for all x.
- (D) $F(x) + G(x) = x^2$ for all x.
- (E) $F(x^2) + G(x^2) = x$ for all x.

Your answer:	
--------------	--

- (5) (**) Suppose F is a function defined on $\mathbb{R} \setminus \{0\}$ such that $F'(x) = -1/x^2$ for all $x \in \mathbb{R} \setminus \{0\}$. Which of the following pieces of information is/are **sufficient** to determine F completely?
 - (A) The value of F at any two positive numbers.
 - (B) The value of F at any two negative numbers.
 - (C) The value of F at a positive number and a negative number.
 - (D) Any of the above pieces of information is sufficient, i.e., we need to know the value of F at any two numbers.
 - (E) None of the above pieces of information is sufficient.