CLASS QUIZ: NOVEMBER 4: INTEGRATION

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): \qquad
(1) Which of the following is an antiderivative of $x \cos x$?
(A) $x \sin x+\cos x$
(B) $x \sin x-\cos x$
(C) $-x \sin x+\cos x$
(D) $-x \sin x-\cos x$
(E) None of the above

Your answer: \qquad
(2) $\left(^{*}\right)$ Suppose F and G are two functions defined on \mathbb{R} and k is a natural number such that the $k^{t h}$ derivatives of F and G exist and are equal on all of \mathbb{R}. Then, $F-G$ must be a polynomial function. What is the maximum possible degree of $F-G$? (Note: Assume constant polynomials to have degree zero)
(A) $k-2$
(B) $k-1$
(C) k
(D) $k+1$
(E) There is no bound in terms of k.

Your answer: \qquad
(3) $\left(^{(* *}\right)$ Suppose f is a continuous function on \mathbb{R}. Clearly, f has antiderivatives on \mathbb{R}. For all but one of the following conditions, it is possible to guarantee, without any further information about f, that there exists an antiderivative F satisfying that condition. Identify the exceptional condition (i.e., the condition that it may not always be possible to satisfy).
(A) $F(1)=F(0)$.
(B) $F(1)+F(0)=0$.
(C) $F(1)+F(0)=1$.
(D) $F(1)=2 F(0)$.
(E) $F(1) F(0)=0$.

Your answer: \qquad
(4) (**) Suppose $F(x)=\int_{0}^{x} \sin ^{2}\left(t^{2}\right) d t$ and $G(x)=\int_{0}^{x} \cos ^{2}\left(t^{2}\right) d t$. Which of the following is true?
(A) $F+G$ is the zero function.
(B) $F+G$ is a constant function with nonzero value.
(C) $F(x)+G(x)=x$ for all x.
(D) $F(x)+G(x)=x^{2}$ for all x.
(E) $F\left(x^{2}\right)+G\left(x^{2}\right)=x$ for all x.

Your answer:
(5) $\left(^{* *}\right)$ Suppose F is a function defined on $\mathbb{R} \backslash\{0\}$ such that $F^{\prime}(x)=-1 / x^{2}$ for all $x \in \mathbb{R} \backslash\{0\}$. Which of the following pieces of information is/are sufficient to determine F completely?
(A) The value of F at any two positive numbers.
(B) The value of F at any two negative numbers.
(C) The value of F at a positive number and a negative number.
(D) Any of the above pieces of information is sufficient, i.e., we need to know the value of F at any two numbers.
(E) None of the above pieces of information is sufficient.

Your answer:

