CLASS QUIZ: OCTOBER 19: INCREASE/DECREASE AND MAXIMA/MINIMA

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): ____

You are expected to take about one minute per question.

- (1) (*) Suppose f is a function defined on a closed interval [a, c]. Suppose that the left-hand derivative of f at c exists and equals ℓ . Which of the following implications is **true in general**? Last year: 8/15 correct
 - (A) If f(x) < f(c) for all $a \le x < c$, then $\ell < 0$.
 - (B) If $f(x) \leq f(c)$ for all $a \leq x < c$, then $\ell \leq 0$.
 - (C) If f(x) < f(c) for all $a \le x < c$, then $\ell > 0$.
 - (D) If $f(x) \leq f(c)$ for all $a \leq x < c$, then $\ell \geq 0$.
 - (E) None of the above is true in general.

Your answer: _____

- (2) (**) Suppose f and g are increasing functions from \mathbb{R} to \mathbb{R} . Which of the following functions is not guaranteed to be an increasing function from \mathbb{R} to \mathbb{R} ? Last year: 1/15 correct
 - (A) f + g
 - (B) $f \cdot g$
 - (C) $f \circ g$
 - (D) All of the above, i.e., none of them is guaranteed to be increasing.
 - (E) None of the above, i.e., they are all guaranteed to be increasing.

Your answer:

PLEASE TURN OVER FOR THE THIRD AND FOURTH QUESTION.

- (3) (**) Suppose f is a continuous function defined on an open interval (a, b) and c is a point in (a, b). Which of the following implications is **true**? Last year: 5/15 correct
 - (A) If c is a point of local minimum for f, then there is a value $\delta > 0$ and an open interval $(c-\delta, c+\delta) \subseteq (a,b)$ such that f is non-increasing on $(c-\delta, c)$ and non-decreasing on $(c, c+\delta)$.
 - (B) If there is a value $\delta > 0$ and an open interval $(c \delta, c + \delta) \subseteq (a, b)$ such that f is non-increasing on $(c \delta, c)$ and non-decreasing on $(c, c + \delta)$, then c is a point of local minimum for f.
 - (C) If c is a point of local minimum for f, then there is a value $\delta > 0$ and an open interval $(c \delta, c + \delta) \subseteq (a, b)$ such that f is non-decreasing on $(c \delta, c)$ and non-increasing on $(c, c + \delta)$.
 - (D) If there is a value $\delta > 0$ and an open interval $(c \delta, c + \delta) \subseteq (a, b)$ such that f is non-decreasing on $(c \delta, c)$ and non-increasing on $(c, c + \delta)$, then c is a point of local minimum for f.
 - (E) All of the above are true.

Your answer:	

- (4) (**) Suppose f is a continuously differentiable function on \mathbb{R} and f' is a periodic function with period h. (Recall that periodic derivative implies that the original function is a sum of ...). Suppose S is the set of points of local maximum for f, and T is the set of local maximum values. Which of the following is **true in general** about the sets S and T? Last year: 3/15 correct
 - (A) The set S is invariant under translation by h (i.e., $x \in S$ if and only if $x + h \in S$) and all the values in the set T are in the image of the set [0, h] under f.
 - (B) The set S is invariant under translation by h (i.e., $x \in S$ if and only if $x + h \in S$) but all the values in the set T need not be in the image of the set [0, h] under f.
 - (C) Both the sets S and T are invariant under translation by h.
 - (D) Both the sets S and T are finite.
 - (E) Both the sets S and T are infinite.

Your answer: _