CLASS QUIZ: OCTOBER 19: INCREASE/DECREASE AND MAXIMA/MINIMA

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):
You are expected to take about one minute per question.
$(1)\left(^{*}\right)$ Suppose f is a function defined on a closed interval $[a, c]$. Suppose that the left-hand derivative of f at c exists and equals ℓ. Which of the following implications is true in general? Last year: 8/15 correct
(A) If $f(x)<f(c)$ for all $a \leq x<c$, then $\ell<0$.
(B) If $f(x) \leq f(c)$ for all $a \leq x<c$, then $\ell \leq 0$.
(C) If $f(x)<f(c)$ for all $a \leq x<c$, then $\ell>0$.
(D) If $f(x) \leq f(c)$ for all $a \leq x<c$, then $\ell \geq 0$.
(E) None of the above is true in general.

Your answer: \qquad
(2) $\left({ }^{* *}\right)$ Suppose f and g are increasing functions from \mathbb{R} to \mathbb{R}. Which of the following functions is not guaranteed to be an increasing function from \mathbb{R} to \mathbb{R} ? Last year: $1 / 15$ correct
(A) $f+g$
(B) $f \cdot g$
(C) $f \circ g$
(D) All of the above, i.e., none of them is guaranteed to be increasing.
(E) None of the above, i.e., they are all guaranteed to be increasing.

Your answer: \qquad

PLEASE TURN OVER FOR THE THIRD AND FOURTH QUESTION.
(3) $\left(^{* *}\right)$ Suppose f is a continuous function defined on an open interval (a, b) and c is a point in (a, b). Which of the following implications is true? Last year: $5 / 15$ correct
(A) If c is a point of local minimum for f, then there is a value $\delta>0$ and an open interval $(c-\delta, c+\delta) \subseteq(a, b)$ such that f is non-increasing on $(c-\delta, c)$ and non-decreasing on $(c, c+\delta)$.
(B) If there is a value $\delta>0$ and an open interval $(c-\delta, c+\delta) \subseteq(a, b)$ such that f is non-increasing on $(c-\delta, c)$ and non-decreasing on $(c, c+\delta)$, then c is a point of local minimum for f.
(C) If c is a point of local minimum for f, then there is a value $\delta>0$ and an open interval $(c-\delta, c+\delta) \subseteq(a, b)$ such that f is non-decreasing on $(c-\delta, c)$ and non-increasing on $(c, c+\delta)$.
(D) If there is a value $\delta>0$ and an open interval $(c-\delta, c+\delta) \subseteq(a, b)$ such that f is non-decreasing on $(c-\delta, c)$ and non-increasing on $(c, c+\delta)$, then c is a point of local minimum for f.
(E) All of the above are true.

Your answer: \qquad
(4) $\left(^{* *}\right)$ Suppose f is a continuously differentiable function on \mathbb{R} and f^{\prime} is a periodic function with period h. (Recall that periodic derivative implies that the original function is a sum of ...). Suppose S is the set of points of local maximum for f, and T is the set of local maximum values. Which of the following is true in general about the sets S and T ? Last year: 3/15 correct
(A) The set S is invariant under translation by h (i.e., $x \in S$ if and only if $x+h \in S$) and all the values in the set T are in the image of the set $[0, h]$ under f.
(B) The set S is invariant under translation by h (i.e., $x \in S$ if and only if $x+h \in S$) but all the values in the set T need not be in the image of the set $[0, h]$ under f.
(C) Both the sets S and T are invariant under translation by h.
(D) Both the sets S and T are finite.
(E) Both the sets S and T are infinite.

Your answer: \qquad

