CLASS QUIZ: OCTOBER 14: DERIVATIVES

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): _

- (1) Suppose f and g are functions from \mathbb{R} to \mathbb{R} that are everywhere differentiable. Which of the following functions is/are guaranteed to be everywhere differentiable? Last year: 13/14 correct
 - (A) f + g
 - (B) f g
 - (C) $f \cdot g$
 - (D) $f \circ g$
 - (E) All of the above

Your answer:

- (2) Suppose f and g are both twice differentiable functions everywhere on \mathbb{R} . Which of the following is the correct formula for $(f \cdot g)''$? Last year: 13/14 correct

 - (A) $f'' \cdot g + f \cdot g''$ (B) $f'' \cdot g + f' \cdot g' + f \cdot g''$ (C) $f'' \cdot g + 2f' \cdot g' + f \cdot g''$

 - (D) $f'' \cdot g f' \cdot g' + f \cdot g''$ (E) $f'' \cdot g - 2f' \cdot g' + f \cdot g''$

Your answer: _____

PLEASE TURN OVER FOR THE THIRD AND FOURTH QUESTION.

- (3) Suppose f and g are both twice differentiable functions everywhere on \mathbb{R} . Which of the following is the correct formula for $(f \circ g)''$? Last year: 14/14 correct
 - (A) $(f'' \circ g) \cdot g''$
 - (B) $(f'' \circ g) \cdot (f' \circ g') \cdot g''$

 - (D) $(f' \circ g) \cdot (f' \circ g') \cdot g$ (C) $(f'' \circ g) \cdot (f' \circ g') \cdot (f \circ g'')$ (D) $(f'' \circ g) \cdot (g')^2 + (f' \circ g) \cdot g''$ (E) $(f' \circ g') \cdot (f \circ g) + (f'' \circ g'')$

- (4) Suppose f is an everywhere differentiable function on \mathbb{R} and $g(x) := f(x^3)$. What is g'(x)? Last year: 13/14 correct
 - (A) $3x^2 f(x)$

 - (A) $3x^2 f'(x)$ (B) $3x^2 f'(x)$ (C) $3x^2 f(x^3)$ (D) $3x^2 f'(x^3)$

 - (E) $f'(3x^2)$

Your answer: _____