CLASS QUIZ: OCTOBER 12: DERIVATIVES

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):
Write your answer in the space provided. In the space below, you can explain your work if you want (this will not affect scoring). I may or may not get time to look at the work you have done, but it may help you recall how you arrived at a particular answer.

You are expected to take about one minute per question.
(1) ${ }^{(* *)}$ Suppose f is a differentiable function on \mathbb{R}. Which of the following implications is false? Last year: 0/14 correct
(A) If f is even, then f^{\prime} is odd.
(B) If f is odd, then f^{\prime} is even.
(C) If f^{\prime} is even, then f is odd.
(D) If f^{\prime} is odd, then f is even.
(E) None of the above, i.e., they are all true.

Your answer: \qquad
(2) ${ }^{*}$) A function f on \mathbb{R} is said to satisfy the intermediate value property if, for any $a<b \in \mathbb{R}$, and any d between $f(a)$ and $f(b)$, there exists $c \in[a, b]$ such that $f(c)=d$. Which (one or more) of the following functions satisfies the intermediate value property? Last year: 7/14 correct
(A) $f(x):=\left\{\begin{aligned} \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{aligned}\right.$
(B) $f(x):= \begin{cases}1, & x \text { rational } \\ 0, & x \text { irrational }\end{cases}$
(C) $f(x):= \begin{cases}x, & x \text { rational } \\ 0, & x \text { irrational }\end{cases}$
(D) All of the above
(E) None of the above

Your answer: \qquad

PLEASE TURN OVER FOR THE THIRD AND FOURTH QUESTION.
(3) Which (one or more) of the following functions have a period of π ? Last year: $12 / 14$ correct
(A) $x \mapsto \sin ^{2} x$
(B) $x \mapsto|\sin x|$
(C) $x \mapsto \cos ^{2} x$
(D) $x \mapsto|\cos x|$
(E) All of the above

Your answer: \qquad
(4) Suppose f is a function defined on all of \mathbb{R} such that f^{\prime} is a periodic function defined on all of \mathbb{R}. What can we conclude is definitely true about f ? Last year: 8/14 correct
(A) f must be a linear function.
(B) f must be a periodic function.
(C) f can be expressed as the sum of a linear and a periodic function, but f need not be either linear or periodic.
(D) f can be expressed as the product of a linear and periodic function, but f need not be either linear or periodic.
(E) f can be expressed as a composite of a linear and a periodic function, but f need not be either linear or periodic.

Your answer: \qquad

