CLASS QUIZ: OCTOBER 3: LIMITS

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):

- (1) Which of these is the correct interpretation of $\lim_{x\to c} f(x) = L$ in terms of the definition of limit? Last year's performance: 9/12 correct
 - (A) For every $\alpha > 0$, there exists $\beta > 0$ such that if $0 < |x c| < \alpha$, then $|f(x) L| < \beta$.
 - (B) There exists $\alpha > 0$ such that for every $\beta > 0$, and $0 < |x c| < \alpha$, we have $|f(x) L| < \beta$.
 - (C) For every $\alpha > 0$, there exists $\beta > 0$ such that if $0 < |x c| < \beta$, then $|f(x) L| < \alpha$.
 - (D) There exists $\alpha > 0$ such that for every $\beta > 0$ and $0 < |x c| < \beta$, we have $|f(x) L| < \alpha$.
 - (E) None of the above

Your answer: ____

- (2) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function. Which of the following says that f does not have a limit at any point in \mathbb{R} (i.e., there is no point $c \in \mathbb{R}$ for which $\lim_{x\to c} f(x)$ exists)? Last year's performance: 10/12 correct
 - (A) For every $c \in \mathbb{R}$, there exists $L \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that for all x satisfying $0 < |x c| < \delta$, we have $|f(x) L| \ge \epsilon$.
 - (B) There exists $c \in \mathbb{R}$ such that for every $L \in \mathbb{R}$, there exists $\epsilon > 0$ such that for every $\delta > 0$, there exists x satisfying $0 < |x c| < \delta$ and $|f(x) L| \ge \epsilon$.
 - (C) For every $c \in \mathbb{R}$ and every $L \in \mathbb{R}$, there exists $\epsilon > 0$ such that for every $\delta > 0$, there exists x satisfying $0 < |x c| < \delta$ and $|f(x) L| \ge \epsilon$.
 - (D) There exists $c \in \mathbb{R}$ and $L \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that for all x satisfying $0 < |x c| < \delta$, we have $|f(x) L| \ge \epsilon$.
 - (E) All of the above.

Your answer: _

- (3) In the usual $\epsilon \delta$ definition of limit for a given limit $\lim_{x\to c} f(x) = L$, if a given value $\delta > 0$ works for a given value $\epsilon > 0$, then which of the following is true? Last year's performance: 17/26 correct, appeared in 153 quiz
 - (A) Every smaller positive value of δ works for the same ϵ . Also, the given value of δ works for every smaller positive value of ϵ .
 - (B) Every smaller positive value of δ works for the same ϵ . Also, the given value of δ works for every larger value of ϵ .
 - (C) Every larger value of δ works for the same ϵ . Also, the given value of δ works for every smaller positive value of ϵ .
 - (D) Every larger value of δ works for the same ϵ . Also, the given value of δ works for every larger value of ϵ .
 - (E) None of the above statements need always be true.

Your answer: _

- (4) Which of the following is a correct formulation of the statement $\lim_{x\to c} f(x) = L$, in a manner that avoids the use of ϵ s and δ s? Not appeared in previous years
 - (A) For every open interval centered at c, there is an open interval centered at L such that the image under f of the open interval centered at c (excluding the point c itself) is contained in the open interval centered at L.
 - (B) For every open interval centered at c, there is an open interval centered at L such that the image under f of the open interval centered at c (excluding the point c itself) contains the open interval centered at L.
 - (C) For every open interval centered at L, there is an open interval centered at c such that the image under f of the open interval centered at c (excluding the point c itself) is contained in the open interval centered at L.
 - (D) For every open interval centered at L, there is an open interval centered at c such that the image under f of the open interval centered at c (excluding the point c itself) contains the open interval centered at L.
 - (E) None of the above.

Your answer: _____