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Abstract. This is the second part of a two-part series intended to give the author and readers a flavour
of noncommutative algebra. The material is related to topics covered in math 325, a graduate algebra
course taught by Professor Ginzburg at the University of Chicago. The author would like to thank
Emily Riehl and Michael P. Miller for their comments and suggestions, and other first-year students for
their counterexamples.

1. The story for semisimple Artinian rings

1.1. Definition of semisimple Artinian.

Definition (Semisimple Artinian ring). A ring is said to be semisimple Artinian(defined) if it is
semisimple as a left module over itself.

To explore this a bit more, a quick observation:

Claim. If M is a finitely generated semisimple left R-module, then M is semisimple of finite length
over R. In particular if R is semisimple as a left module over itself, then R is semisimple of finite length.

Note that without the assumption of semisimplicity, this result is false: for instance, Z is finitely
generated, but has infinite length as a module over itself.

However, note that we are not assuming here that R is Artinian. If R were Artinian, we could drop
the hypothesis that M is semisimple – the result would then be true for any finitely generated module
(this was observed in part 1).

Proof. Express M as a direct sum of simple left modules, and pick a finite generating set for M . Each of
the elements of this finite generating set can be expressed as finite linear combinations of elements from
the summands. Thus, only finitely many summands suffice to express all the generators. From this,
it follows that finitely many summands generate M , hence M is a direct sum of finitely many simple
modules. �

Thus a ring which is semisimple as a left module over itself is actually semisimple of finite length, from
which it follows that it is Artinian as a left module over itself. This justifies the terminology “semisimple
Artinian”.

1.2. What makes life simple for Artinian rings. We had defined a “left-Artinian ring” as a ring in
which any descending chain of left ideals stabilized. After a point, we conveniently forgot to tag along
the “left”. That’s for good reason: “left-Artinian” and “right-Artinian” mean the same thing. Here’s a
theorem, parts of which we have proved:

Theorem 1 (Characterizations of Artinian ring). Let R be a ring. The following are equivalent:
• R is left-Artinian as a left module over itself
• R is right-Artinian as a right module over itself
• R has finite length as a left module over itself
• R has finite length as a right module over itself
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• The quotient of R by its Jacobson radical is semisimple of finite length as a R-module1 and the
Jacobson radical of R is nilpotent.

Thus, there are two ways in which Artinian rings are more tractable than ordinary rings:
• The bottom is light: The Jacobson radical is nilpotent.
• The top is light: The top of an Artinian ring is semisimple of finite length as a module over itself.

Since the two sources of complexity, namely the top and the bottom, are relatively nice for Artinian
rings, we might expect Artinian rings to be a piece of cake. In fact, they are far from that, because
terrible complexities could lie at the bottom. However, the top, viz., the quotient by the Jacobson radical,
is relatively good.

We take a short break and journey into the exotic world of Galois correspondences.

2. The double centralizer property

2.1. A quick note on Galois correspondences. Let’s forget about rings and do some set theory for
a few moments (alas, only a few moments). Suppose A and B are two sets and R ⊂ A×B is a “binary
relation”. Then we can define maps F : 2A → 2B and G : 2B → 2A as follows:

F (S) = {b ∈ B|(a, b) ∈ R ∀ a ∈ S}
G(T ) = {a ∈ A|(a, b) ∈ R ∀ b ∈ T}

Such a setup is a Galois correspondence(defined).

Theorem 2 (The big theorem of Galois correspondences). (1) F and G are contravariant2, in
the sense that if S ⊂ S′ then F (S′) ⊂ F (S) and similarly for G.

(2) S ⊂ G(F (S)) and T ⊂ F (G(T )) for all S ⊂ A, T ⊂ B.
(3) F ◦G ◦ F = F and G ◦ F ◦G = G.

(3) follows from (1) and (2), and both (1) and (2) are easy to check. In isolation (3) would have
seemed hard; and though it is easy to check when written as above, it is still pretty miraculous.

Intuitively, when we do G ◦ F then we’re going to everything which is related to everything which is
related to what we started out with. And doing G ◦ F yet again has no effect; hence G ◦ F is a kind of
closure operator. The million-dollar question is:

What are the subsets S of A for which G(F (S)) = S; what are the subsets T of B for
which F (G(T )) = T? In other words, what are the closed subsets of A and of B?3

While we’re having fun, let’s look at three examples of Galois correspondences, the first in honour of
the man behind the very first Galois correspondence, and the second and third because they are directly
relevant to what we’re doing here:

(1) Consider a Galois field extension L/K and let G be its Galois group. Then define the following
binary relation between G and L, g ∈ G is related to a ∈ L if g fixes a.

The fundamental theorem of Galois theory states that the closed sets in L are precisely the
subfields containing K and the closed sets in G are precisely the subgroups of G (in fact, it says
a lot more, but LNGITRN).

(2) Consider the polynomial ring k[x1, x2, . . . , xn] and the space kn of n-tuples over k. Elements
of k[x1, x2, . . . , xn] define maps from kn to k by evaluating a polynomial. The relation between
k[x1, x2, . . . , xn] and kn is defined as follows: p ∈ k[x1, x2, . . . , xn] is related to v ∈ kn iff p(v) = 0.

One of the many versions of Hilbert’s nullstellensatz says that when k is algebraically closed,
a set is closed in k[x1, x2, . . . , xn] iff it is a radical ideal.

1The “finite length” part can be dropped; it’s automatic
2For the category theorist: F and G are contravariant as functors between the categories of subsets of A and of B; this

suggests a natural way to generalize the notion of “Galois correspondence” to arbitrary categories
3The “closed” subsets need not correspond to closed subsets for any topology; for that, we need the extra condition

that a finite union of closed sets is closed. This condition does not hold for many Galois correspondences; it certainly fails
on the “algebraic” side.
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(3) Let R be a (noncommutative) ring. Define a binary relation between R and R as follows: x is
related to y if xy = yx, viz., they commute.

The question about which subrings of R are closed in the induced Galois correspondence will
haunt us for the next few subsections. It’s worth noting that the binary relation is symmetric,
so the “closed” subsets on one side are the same as the closed subsets on the other side.

2.2. The centralizer and double centralizer.

Definition (Centralizer of a subset). Given a subset of a ring, the centralizer(defined) of the subset
in the ring is defined as the set of all elements of the ring which commute with that subset.

In the language of Galois correspondences, it is the Galois correspondent to the given subset for the
binary relation of commuting. The centralizer of any subset is a subring.

From the abstract nonsense4 of Galois correspondences we see immediately that the following are
equivalent:

• A subring occurs as the centralizer of some subring
• A subring is the centralizer of its centralizer
• A subring is “closed” in the sense of the Galois correspondence described above

When we have a lot of equivalent things, it’s natural to introduce a definition, so let’s do that:

Definition (Double-centralizer property). A subring of a ring is said to have the double-centralizer
property(defined) if it equals the centralizer of its centralizer (also called its double-centralizer).

Subrings with the double-centralizer property can be viewed as “closed” in a suitable topological sense.

2.3. A topological analogy. So far, the three examples of Galois correspondences we outlined were
algebraic. There’s a topological example of a Galois correspondence which comes from inner product
spaces: the relation here is that of being orthogonal. We know that for any subspace A of an inner
product space V , A is contained in A⊥⊥, the containment may in general be strict.

This example also lends more credibility to the notion of closed; for instance, it is known that in a
Hilbert space, a subspace equals the orthogonal complement of its orthogonal complement iff it is “closed”
in a topological sense. Further, we know that for finite-dimensional spaces, every linear subspace is closed.

Even if a subspace is not closed, we know that its double-perp subspace equals its closure in a topolog-
ical sense. In other words, any subspace is dense in its double-perp, and in the finite-dimensional case,
that forces it to be closed. We shall see something similar happen in the finite-dimensional case. Subrings
which satisfy certain “nice” hypotheses shall be discovered to be “dense” in their double-centralizers, and
if we impose finiteness assumptions, then that will force them to have the double-centralizer property.

2.4. So what subrings have the DCP?. A good starting point: what subrings of a ring have the
double-centralizer property? Here are some quick observations:

(1) The double-centralizer of any subring contained inside the center is the whole center. In partic-
ular, the only subring inside the center, which has the double-centralizer property, is the whole
center.

(2) If the centralizer of a subring is precisely the center, then its double-centralizer is the whole ring.
The whole ring is thus another subring which has the double-centralizer property.

(3) Any subring that has the double-centralizer property must contain the center.
The canonical example to keep in mind is the matrix ring over a field: here the center is the scalar

matrices, and the whole ring is all matrices.
Thus the center and the whole ring are two extreme examples; there are in general other examples.

For instance:

4A term that category theorists, model theorists and other mathematicians use in self-derisive humour for anything
that is considerably more general than the situation at hand demands
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(1) Suppose L is a field extension of K of degree n. Then L acts on the vector space Kn (once we
choose a basis thereof); this gives an injective ring homomorphism from L to Mn(K). A quick
check yields that L is its own centralizer in Mn(K), hence it has the double-centralizer property.

(2) Consider the ring of diagonal matrices over a field K, of order n. This ring is again its own
centralizer, and hence its own double-centralizer.

(3) On the other hand, the ring of upper-triangular matrices does not have the double-centralizer
property; in fact, its centralizer is the scalar matrices (at least over large enough fields).

Each of the examples (1)-(3) is distinct in flavour, as some more exploration shall reveal.

2.5. Modules and double centralizers. Suppose R is a ring and M is a left R-module. Then M
is, first and foremost, an Abelian group, and left multiplication by any element of R yields an Abelian
group endomorphism of M . We have a map:

R → EndZ (M)

This map is a ring homomorphism (in fact the definition of module was designed to make it so). A
few points to note here:

• This is analogous to the fact that when a group acts on a set, we get a homomorphism from the
group to the symmetric group on that set.

• The kernel of the map is precisely the annihilator of the module M (does that ring a bell? If not,
time to go back to part 1!), and the image is isomorphic to the quotient of R by the annihilator
of M (which is a two-sided ideal).

• M is faithful as a R-module iff the above ring homomorphism is injective, viz., if R embeds into
EndZ (M).

• Even if M is not faithful as a R-module, we can view M as a faithful RM -module where RM is
the quotient of R by the annihilator of M . For all practical purposes, M only “sees” RM – what
R is at large does not affect M .

Remember that for now, every map in the world is a homomorphism of Abelian groups: any map that
isn’t is anathema to us. Now the ring EndR (M) is a subring of EndZ (M), and we can in fact characterize
it purely ring-theoretically: it is the centralizer in EndZ (M) of RM (the image of R in EndZ (M)).

Definition (Double-centralizer property). A left module M over a ring R is said to have the double-
centralizer property for modules(defined) if the ring RM (the image of R in EndZ (M)) has the double-
centralizer property. In effect, what this means is that the only Abelian group endomorphisms of M ,
which commute with all endomorphisms, are precisely those coming from elements of R.

2.6. Left, right, left. The typical way we think of the double-centralizer property is by left and right
actions. The left-right headache is confusing but it’s also illuminating and character-building. I’ll begin
by defining a bimodule.

Definition (Bimodule). Let R, S be rings. A (R,S)-bimodule(defined) is an Abelian group M en-
dowed with the structure of a left R-module and a right S-module, such that for any r ∈ R, s ∈ S and
m ∈ M we have:

(rm)s = r(ms)

Phrased in the above way, this looks like an associativity condition, but let’s not get misled by that!
Some facts:

• A right S-module is equivalent to a left Sop-module. Here Sop denotes the opposite ring, which
I described in Part 1.

• A (R,S)-bimodule can be viewed as an Abelian group M which is a left module over both R
and Sop such that the images of R and Sop inside EndZ (M) commute element-wise. In other
words “associativity” becomes “commutativity” when one switches right to left.
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Thinking of things in the bimodule language is sometimes helpful when we want to quickly find
operators which centralize a given ring. The classical example is the matrix ring Mn(R) over a (possibly)
noncommutative ring R, acting on the module M = Rn by the usual left multiplication of a matrix with
a column vector.

We can turn M = Rn into a (Mn(R), R)-bimodule where Mn(R) acts by left multiplication (as n× n
matrices) and R acts as right multiplication (as 1 × 1 matrices). Associativity of matrix multiplication
tells us that we indeed have a bimodule, and using the “opposite” stuff mentioned above, we see that Rn

is a left Rop-module and a left Mn(R)-module and the images of both of these in EndZ (Rn) commute
(it is actually a faithful module for both, so the images are the same as the rings themselves).

When R is a commutative ring, right multiplication by a scalar element corresponds to left multipli-
cation by the same scalar matrix, and this is the popular statement that scalars live inside the center of
the matrix ring. However, now that the ring is noncommutative, right multiplication is the correct way
to think of things.

2.7. Generalities and specifics. A list of facts, which, as usual, are not hard to prove them once
they’re pointed out, but are hard to mechanically come up with:

• If R is a commutative ring, and M is R as a R-module, the centralizer of R in EndZ (M) contains
R. Another way of thinking of it is that the centralizer contains right multiplication by elements
of R, but right multiplication is the same as left multiplication.

• If R is any ring, and M is R as a R-module, the centralizer of R is precisely Rop. This may or
may not in general be isomorphic to R; rings R which are isomorphic to their opposite ring were
called self-opposite in part 1; examples are matrix rings over commutative rings.

• The intersection of R with Rop, viz., those elements of R which commute with all elements of R,
are precisely the center of R. Here intersection is understood to mean intersection as subrings
of EndZ (M).

2.8. Back to the old story. In Part 1, we considered in detail the following problem: given a module
over a ring, relate conditions on the module to conditions on the endomorphism ring. We are now trying
to complete the triad: relate the original ring, the module on it, and the endomorphism ring. The
real question we’re after is whether the ring we start with can itself be obtained as an endomorphism
ring. Clearly, if we were to somehow achieve this, then we would have imposed significant structural
constraints on our ring. This is where the double-centralizer property comes in.

For example, if M were an R-module with the double-centralizer property, and if it were further true
that M is semisimple of finite length as a module over the endomorphism ring, then we’ve obtained
R as the endomorphism ring of a semisimple module of finite length. In Part 1, we proved that the
endomorphism ring of any semisimple module of finite length is a direct sum of matrix rings over division
rings.

So the million-dollar question: under what condition can we guarantee the existence of such a nice
module?

2.9. Glimpses of the answer. One answer is to impose conditions such that:

• R is semisimple as a module over itself; and it turns out then that it’s also semisimple as a
module over Rop.

• R has the double-centralizer property as a module over itself.

2.10. Jacobson density theorem. The Jacobson density theorem is an extremely important result; its
applications and analogues are useful in applications beyond what we’ll discuss here. So it’s unfortunate
that we are giving only a passing mention to it.

Definition (Dense subring). Let M be a left S-module and R be a subring of S. We say that R
is a dense subring(defined) of S (with respect to the module M) if for any finite collection of elements
m1,m2, . . . ,mn, and any element s, there exists an element r such that r.mi = s.mi for 1 ≤ i ≤ n.

One way of viewing this is that as far as the effect on finitely many elements goes, there is no way of
distinguishing R from S. If M is a finitely generated S-module, then this forces RM = SM .
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Theorem 3 (Jacobson density theorem). Given any faithful left module over a ring, the ring is a dense
subring of its double-centralizer with respect to that module. More generally, if M is a left R-module,
then RM is a dense subring of its double centralizer in EndZ (M).

A corollary of this is that if M is a finitely generated R-module, then R has the double-centralizer
property.

2.11. Glimpses of Wedderburn theory. Suppose R were semisimple of finite length as a module over
itself. Note that R as a module over Rop is certainly finitely generated (in fact, it’s free of rank 1). Then
Jacobson density would yield that R equals its double centralizer, and from what we’ve seen earlier, R
is the endomorphism ring of a semisimple module of finite length over Rop. Hence R is a direct sum of
matrix rings over division rings. Proof!

So the real question is: under what conditions is R semisimple as a module of finite length over itself?
It turns out that this is equivalent to the definition of semisimple Artinian ring we gave earlier: R is
Artinian and its Jacobson radical is 0 (we won’t sketch a proof here). Here are some counterexamples:

• The ring Z is neither semisimple nor Artinian. In fact given any sequence of integers a1, a2, . . . , an

we have a descending chain of ideals whose nth element is the ideal generated by a1a2 . . . an.
• A countable direct sum of copies of a simple ring is semisimple (in fact isotypical) but it is not

Artinian, and it doesn’t have finite length over itself.
• The ring Z/pkZ is Artinian but it is not semisimple as a module over itself. The only simple

modules over this ring are Z/pZs, and Z/pkZ is not a direct sum of these.

2.12. Simple Artinian rings. Semisimple Artinian rings are direct sums of matrix rings over division
rings, and each of the matrix rings over division rings is a simple Artinian ring. Here we mean it’s simple
as a ring: it has no proper nonzero two-sided ideals. There is a natural left module for such a simple
Artinian ring: the left vector space of order n over the division ring, with usual matrix multiplication.
If D is the underlying division ring, the centralizer of Mn(D) is Dop – right multiplication by elements
of D.

A direct sum of such simple Artinian rings does not have any faithful simple modules of its own. In
fact, if:

R = Mn1(D1)⊕Mn2(D2)⊕ . . .⊕Mnk
(Dk)

Then the following are true:

• The above is the unique decomposition of R as a sum of minimal two-sided ideals.
• From a minimal two-sided ideal Mni(Di) both ni and Di can be recovered. Di is recovered by

looking at the centralizer, which is Dop
i , and ni is recovered by the fact that matrix rings of

different orders are non-isomorphic.
• Any faithful simple module over R must be annihilated by all but one of the summands, and

for that one summand, it looks just like the natural module described above. In other words, a
semisimple Artinian ring is left-primitive iff it is simple.

In upshot, the following are equivalent:
Simple Artinian ⇐⇒ Left-primitive Artinian ⇐⇒ Right-primitive Artinian ⇐⇒ matrix ring over

division ring
The notions of being simple, left-primitive, and right-primitive could be very different for non-Artinian

rings.

2.13. Jacobson radical for Artinian rings. What we’ve seen is that the tops of Artinian rings behave
nicely: they’re semisimple in more ways than one; they’re direct sums of matrix rings over division rings.
Using this, we can give many alternative characterizations of the Jacobson radical for Artinian rings:

(1) The Jacobson radical is the intersection of all maximal two-sided ideals.
(2) The Jacobson radical is the smallest ideal for which the quotient is “semisimple of finite length”

as a module over the ring.

After treating ourselves to some offbeat topics, we shall take a look at how these equivalences and
implications fail for the non-Artinian case.
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3. Spectral theory and Amitsur theory

3.1. The spectrum of an element. At one point in time, we were looking at questions like: how close
are elements ab and ba in an arbitrary ring? We had noted that when either a or b is invertible, they are
conjugates and hence behave practically in the same way. Otherwise ab and ba could differ in significant
ways; however, we had noted that if z is a central invertible element then z − ab is invertible iff z − ba
is invertible.

All this, and a lot more, fits nicely into a framework called spectral theory. The idea is to switch to a
base field and look at algebras whose center contains that field. Nonzero elements of the field are central
invertibles.

Definition (Spectrum of an element). Let R be a k-algebra. The spectrum of an element a ∈ R is
defined as the set of all z ∈ k such that a− z (or equivalently, z − a) is not invertible.5

For instance, when R is the matrix ring over k, then the spectrum of R is the set of roots in k of the
characteristic polynomial of a (which is also the same as the set of roots of the minimal polynomial).
The letter z is suggestive of complex analysis, and indeed, one can think of the spectrum as the set of
points where the function (z − a)−1 has a “pole”.

The observation we made earlier can be recast in the following manner: if x and y are weakly conjugate
elements of R (viz, there exist a, b ∈ R such that x = ab and y = ba) then x and y have the same spectrum.
The relation of having the same spectrum is an equivalence relation while the relation of being weakly
conjugate isn’t. So in fact if two elements are equivalent via the equivalence relation generated by being
weakly conjugate, then they have the same spectrum.

Another fact of note is that the spectrum of a nilpotent element contains only the element 0: this is
due to the explicit formula for inverting 1 − x as 1 + x + x2 + . . .. One can view nilpotent elements as
poles of infinite multiplicity; they’re so bad that everything else has to be good.

Putting together our fun observations:

• Any element weakly conjugate to a nilpotent element is nilpotent. In particular, the set of
nilpotent elements (remember, it’s a set now; no longer closed under addition or multiplication)
is closed under the relation of being weakly conjugate; nothing inside is weakly conjugate to
anything outside.

• All nilpotent elements have the same spectrum: the one-point set {0}.
• In general, it may not be true that given any two nilpotent elements a and b, I can find a =

a1, a2, . . . , an = b such that ai is weakly conjugate to ai+1. However, for a matrix ring over k,
this can always be done. The number of steps could be quite huge: for instance, to reach from 0
to an element whose nth power is 0 requires at least n steps, because in each step we can change
the nilpotence by only 1.

3.2. Invertibles and zero divisors. Again, going back to the fun game we had in Part 1: we had
seen that invertible elements can’t be zero divisors, and zero divisors can’t be invertible. Moreover, if
something is a zero divisor, there is no hope that it may become invertible in a suitably enlarged ring.
We had looked at three types of elements:

(1) The left-invertible elements
(2) The left-zero divisors
(3) The elements that are neither left-invertible nor left-zero divisors, viz., the left-cancellative ele-

ments that are not left-invertible.

Now a question: what can we say about rings for which there are no elements of type (3)? Such
rings are definitely very nice. The cool thing about such rings is that elements which are not invertible
continue to remain non-invertible in bigger rings.

It would be even nicer if every element either had a two-sided inverse or was both a left and a right
zero divisor. I don’t know a name for such rings. Since I’ll be referring to these rings a lot, I’ll give them
a name of my own.

5Invertibility means the existence of a “two-sided” inverse.
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Definition (IZ-ring). A ring is termed a IZ- ring(defined) if for every element of the ring, one of the
following holds:

• The element has a two-sided inverse
• The element is both a left and a right zero divisor

IZ stands for “invertible or zero divisor”.

The polynomial ring in one variable is an example of a ring which is not IZ.
For IZ-rings, the zero divisors need not in general form a two-sided ideal. In the particular case that

every element is either invertible or nilpotent, it is true that the nilpotents form a two-sided ideal. (Such
rings were termed completely primary in part 1). However, a sum of zero divisors need not be a zero
divisor in a noncommutative ring.

We thus have the following implications:
• Field =⇒ Division ring =⇒ Completely primary ring =⇒ IZ-ring
• Field =⇒ Division ring =⇒ Completely primary ring =⇒ Local ring

IZ and local are incomparable. The matrix ring over a field is IZ but not local, whereas the ring k[[x]]
is local but not IZ.

Let’s prove our first big result:

Theorem 4. Every Artinian ring is IZ.

There are two proofs of this: one proof uses the Artin-Wedderburn theorem; the other proves things
directly from the definition of Artinianness. I’ll give the latter proof because it illustrates some basic
ideas.

Proof. Suppose R is an Artinian ring and x ∈ R. I will first show, from the fact that R is left-Artinian,
that x is either left-invertible or a right zero divisor.

Consider the descending chain of R-submodules:

R ⊃ Rx ⊃ Rx2 ⊃ . . .

This chain must stabilize at some point, so we have Rxn = Rxn+1. This yields a ∈ R such that
axn+1 = xn. Rearranging gives:

(1− ax)xn = 0
If 1− ax = 0, x has a left inverse. Otherwise, x is a right-zero divisor.
A similar proof shows that since R is right-Artinian, x is either right-invertible or a left zero divisor.
Now an element which has a left inverse cannot be a left zero divisor, and an element which has a

right inverse cannot be a right zero divisor. Thus, the only possibilities are:
• x has a left inverse and a right inverse. Thus, x has a two-sided inverse.
• x is both a left-zero divisor and a right-zero divisor.

This proves that R is an IZ-ring. �

Thus, being an IZ-ring reflects “finiteness” of some sort. Here are some special cases where one could
explicitly work out the above proof:

• The case where R is a finite ring. In this case, one simply looks at the powers of x and waits till
one finds two equal powers.

• The case where R is a finite-dimensional algebra over a field. In this case one finds a minimal
polynomial for any element of R and uses that minimal polynomial to show that the given
element is either invertible or a zero divisor.

The above examples also indicate that IZ-rings need not be Artinian. Indeed, all one needs to ensure
is that the ring “locally” looks Artinian at every point. Here are some examples:

• Consider the exterior algebra in infinitely many variables. This is an IZ-ring; in fact it is a
completely primary ring where every element in the maximal ideal has 0 as its square. How-
ever, the maximal ideal is not nilpotent (precisely because there are infinitely many variables).
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Nonetheless, for any specific element, it lies inside the exterior algebra on finitely many variables,
and hence is either invertible or a zero divisor.

• More generally, any ring constructed as a direct limit of IZ-rings is an IZ-ring. Since the property
of being Artinian is certainly not preserved on taking direct limits, there are plenty of IZ-rings
which are not Artinian.

IZ-rings are the opposite of integral domains:

Definition (Integral domain). A ring is termed an integral domain if no nonzero element is a zero
divisor.

Note that the only IZ-rings which are integral domains are division rings. Thus, an integral domain
must be non-Artinian unless it is a division ring.

Another interesting fact is that integral domains are indecomposable. This follows from the fact that
any nontrivial idempotent e is a zero divisor: e(1− e) = 0.

3.3. The spectral theorem of Amitsur. The main result of spectral theory that Amitsur proved
essentially shows that most of the elements remain of type (3) for non-algebraic elements(actually the
precise theorem we state involves two-sided inverses, but there are variants of all sorts). In other words,
extensions which are not algebraic over their base field, are as far as possible from being IZ.

Let A be a k-algebra. Suppose a ∈ A. Then evaluation at a gives a homomorphism from k[x] to A.
If the homomorphism is injective, then a does not satisfy any polynomial equation over k, in which case
is it termed a transcendental element(defined).

Otherwise, the kernel is a two-sided ideal, and a generator of this ideal (unique upto scalar multiple) is
termed the minimal polynomial(defined) of a. Such an element a is termed an algebraic element(defined).

Nilpotent elements are algebraic over k; but being invertible or being a zero divisor says nothing either
way about being algebraic or transcendental. The inverses or annihilating elements may live anywhere
inside the ring A and may not be polynomials over the element we start with.

Let’s now state Amitsur’s spectral theorem:

Theorem 5 (Spectral theorem of Amitsur). Suppose k is an uncountable field, and A is an algebra
of at most countable dimension over k. Then for any a ∈ A, the spectrum of a is nonempty. Moreover:

(1) a is algebraic iff its spectrum is finite
(2) a is transcendental iff the set of elements in its spectrum which are neither left nor right zero-

divisors, is cocountable. In other words, for all but countably many z, a− z is not invertible, is
not a left zero-divisor, and is not a right zero-divisor.

The proof of this essentially rests on showing that if a is transcendental, then each of the three sets
we are trying to avoid, is at most countable. The trick is to demonstrate that each of these sets gives
rise to vector subspaces of A of at least that much cardinality.

3.4. Amitsur’s theorem. We now state the main theorem of Amitsur, that he proved using the spectral
theorem, and which leads to a number of useful consequences, including the nullstellensat for uncountable
fields:

Theorem 6 (Amitsur theorem). Let A be a k-algebra such that either of the following holds:

• A is finite-dimensional over k
• The dimension of A over k is countable, but k is uncountable and every element of A is either a

zero divisor or is invertible (In our language, A is an IZ-ring).

Then every element of A is algebraic over k.
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The first case is easy (because A is anyway forced to be an IZ-ring); in the second case, we invoke the
spectral theorem of Amitsur to see that the existence of transcendental elements leads to a contradiction.

3.5. The nullstellensatz: that multi-headed fountain. Spectral theory provides an easy proof of
Hilbert’s nullstellensatz for uncountable algerbaically closed fields. The nullstellensatz is actually true for
all algebraically closed fields; however, it’s pretty believable that you might get away without working
with any algebraically closed field other than C, and C is uncountable.

Theorem 7 (Hilbert’s nullstellensatz: Amitsur form). Let k be an algebraically closed uncountable
field. Then any finitely generated division ring over k is k itself (by finitely generated, I mean finitely
generated as a k-algebra.

Proof. For a division ring, every element is either invertible or zero; hence every element is either in-
vertible or a zero divisor. Hence, Amitsur’s theorem applies, and we conclude that every element of the
division ring is algebraic over k. We now use the fact that k is algebraically closed, and again use the fact
that the ring at hand is a division ring, to conclude that the algebraic element must lie in k itself. �

The hard part in the above proof is going from finitely generated to algebraic, and this is where Amitsur
theory helps us: it shows us that transcendental elements are just too bad.

Of course, this is not the usual format in which the nullstellensatz is stated. First a little definition:

Definition (Radical ideal). An ideal I in a commutative ring R is termed a radical ideal(defined) if
whenever fN ∈ I for some positive integer N , f ∈ I.

In commutative rings, radical ideals contain all the nilpotent elements (viz., any radical ideal contains
the nilradical) but in general a radical ideal could be a lot bigger.

I list some typical formulations of the nullstellensatz:

Theorem 8 (Hilbert’s nullstellensatz: various forms). Let k be an algebraically closed field.
(1) Any maximal ideal in k[x1, x2, . . . , xn] has quotient isomorphic to k (in fact, k sits as a vector

space complement to the ideal).
(2) There is a bijective correspondence between the points of kn and maximal ideals of k[x1, x2, . . . , xn]

where a point (a1, a2, . . . , an) is mapped to the ideal of all polynomials which vanish at the point
a1, a2, . . . , an.

(3) Consider the Galois correspondence induced by the following binary relation between k[x1, x2, . . . , xn]
and kn: p is related to a if p(a) = 0. Then the closed sets in k[x1, x2, . . . , xn] are precisely the
radical ideal; in other words, it is an ideal such that if pN vanishes on the set, so does p.

There are also versions of Hilbert’s nullstellensatz that can be stated for arbitrary non-algebraically
closed fields; there are model-theoretic formulations. Alternative proofs and formulations of Hilbert’s
nullstellensatz use techniques from commutative algebra, model theory and many other parts of mathe-
matics.

4. Some finite and infinite-dimensional fun

4.1. Double-checks. Given a module M over a ring R, we can define M∨ (called M -check) to be the
right R-module given by the set of all R-homomorphisms from M to R. For a right R-module, we can
define its left check as all right module maps from the module to the base ring. In general, we have a
map from a module to its double-check; a question might be: when is this map an isomorphism?

There are in general two kinds of obstructions. One obstruction is finiteness. Infinite-dimensional
vector spaces are not equal to their double duals, so it is hard to expect that an infinite-dimensional
module over an arbitrary ring will satisfy the conditions. Thus in this case the double-check is actually
bigger
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The second obstruction is torsion. Without going into the details of this, consider the particular case
that M = R/I where I is a nonzero left ideal. Then there are in general no nonzero homomorphisms
from M to R.

However, interesting and surprising things happen when we combine these obstructions. Here’s a fun
theorem:

Theorem 9 (Countable direct sum equals double-check). Let R be a PID with at least two distinct
primes. Let N be a countable direct product of copies of R and M be the countable direct sum of copies
of R, embedded as a submodule of N . Then any element of N∨ is determined by its action on M .

Proof. With some thought, it suffices to show that if a map from N to R is zero on all elements which
have only finitely many nonzero coordinates, then it is zero everywhere.

We first show that for any prime p, a tuple of the form (a0, a1p, a2p
2, . . .) gets mapped to 0. We

then use the fact that R contains at least two distinct primes p and q, to show that for any sequence
(c0, c1, . . .), there exist sequences (a0, a1p, . . .) and (b0, b1p, . . .) which sum up to the give sequence. Since
each of these goes to 0, so does the sum. �

Here’s a corollary of that.

Theorem 10. If R is a PID with at least two distinct primes, then the countable direct product of
R with itself is not semisimple as a R-module.

Proof. As before, let N denote the countable direct product of R with itself, and M the submodule
which is the countable direct sum. If N is semisimple as a R-module, then M is a direct summand of
N , so there exists a semisimple complement M ′. But there should then be a nonzero homomorphism
from M ′ to R (this follows from the fact that M ′ is torsion-free, and contains a rank one submodule).
We can thus define a homomorphism from N to R which is zero on N but nonzero on M , contradicting
the previous result. �

In particular, this shows that the countable direct product of Zs with itself is not semisimple as a
Z-module.

4.2. In the infinite world. In the infinite world funny things happen. For one, direct sums become
different from direct products: a direct product is just a Cartesian product of the underlying sets with
the operations coordinate-wise.6

We consider analogoues of the matrix ring in the infinite world and prove interesting things. Let’s
consider everything over a field, for convenience. Let V be a countable direct sum of copies of k. Let A
be the ring of all k-linear maps from V to V .

Claim. A is left-primitive, with V a faithful simple left A-module.

Proof. It is clear that one can go from any element of V to any other element of V by an element of A,
hence V is clearly simple as a left A-module. Faithfulness is also clear from the definition. �

If we enumerate a basis for V , we can actually write out a matrix for every element of A in that basis.
Such a matrix must be column-finite: every column can have only finitely many nonzero entries. In fact,
the ring of column-finite matrices under multiplication is precisely the ring of k-linear endomorphisms
of V .

The transpose operation, which stood us in good stead in finite dimensions, now fails us. Applying
transpose to a column-finite matrix yields a row-finite matrix, which in general is not column-finite. So
it is not clear whether this ring is self-opposite, and hence it is not clear whether it is also right-primitive.

6Category-theorists may prefer to say that “products” and “coproducts” get distinguished in infinite dimensions. Of
course, the fact that they coincide in finite dimensions is because the objects we are dealing with are “Abelian”.
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A is not simple. It contains a two-sided ideal, namely the ideal of all linear transformations with finite
image.

Let us now describe a subring B of A. In matrix form, once we have chosen a basis, B consists of those
matrices which are both row-finite and column-finite. It turns out that with respect to the module V , B
is a dense subring of A. If we have a dense subring with respect to a simple module, the module remains
simple with respect to the subring, hence B is also a left-primitive ring with faithful simple module V .

Note that B is a self-opposite ring: in fact, the transpose works. On the other hand, the description
of B depends on a choice of basis, unlike that of A.

Here’s an easy-to-check fact:
The double-centralizer of B with respect to the module V is the whole ring A.

Before introducing yet another subring of A, let’s step back a bit and define the unitization of an
ideal.

4.3. Unitization of an ideal. A left ideal of a ring is closed under addition and multiplication; the
only problem is that it doesn’t have a 1. This problem can be remedied by “throwing” in a 1.

Claim. If I is a left ideal of a ring R, the smallest subring of R containing I is, as an Abelian group
I⊕J where J is the subring generated by 1 (in characteristic 0, it is I⊕Z). The direct sum decomposition
given above is not a direct sum decomposition as rings. Rather, the multiplication is defined as:

(a1, n1)(a2, n2) = (a1a2 + n2a1 + n1a2, n1n2)
where the multiplication na means a added to itself n times.

This is an analogue of a “semidirect product”; it describes how to multiply between a subring and an
ideal.

If we are working with k-algebras, then the k-subalgebra generated by an ideal I is defined as I ⊕ k,
with a similar multiplication rule.

The above procedure of passing from an ideal to the subring (or k-subalgebra) generated by it is
termed unitization(defined). Note the following:

• The unitization of a left ideal in a k-algebra is a local ring, and the left ideal is the unique
maximal two-sided ideal in that local ring.7

• In fact, it is a special kind of local ring in the sense that it is “split”: there is an embedding of
the residue field inside the ring. Such local rings are termed equicharacteristic local rings.

There are concrete ways of viewing the localization. Here’s one. Recall the Galois correspondence we
had set up between the polynomial ring and points of kn. Under that Galois correspondence, we may
ask: given a subset of kn (like a line, or circle), what are the polynomials that are constant on that
subset? There is a relation between the polynomials that are constant on the subset, and polynomials
which vanish on the subset:

The subring of k[x1, x2, . . . , xn] of polynomials which are constant on a subset of kn is
the unitization of the ideal of polynomials which vanish on the subset.

Like a lot of mathematical statements, this is easy to prove once stated, but it is profound. This
means that the problem of computing what polynomials vanish on a subset is equivalent to the problem
of computing the subring which is constant on the subset. This leads us into the realm of invariant
theory, but we shall desist from entering that and get back to where we were.

4.4. Another subring of the endomorphism ring. Let’s recall the situation two subsections back:
• V is a countable direct sum of copies of k
• A is the ring of all endomorphisms of V (as a k-vector space). A is a left-primitive ring; in fact,

V is a faithful simple A-module.
• After choosing a basis, we can write elements of A as column-finite matrices. B is the subring

of A comprising matrices that are both row-finite and column-finite. B is also left-primitive. B
is a dense subring of A.

7There is a related concept of “idealizer”: the largest subring in which a given left ideal is a two-sided ideal. This is
analogous to “normalizer” in group theory. The unitization of an ideal is contained in its idealizer.
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• A contains a two-sided ideal I : the ideal of linear transformations having finite image.

Define C as the k-subalgebra of A generated by I. Note that C is again defined in a basis-independent
manner. Again, C is a dense subring of A, and C is again left-primitive. Neither C nor B is contained
inside the other:

• An infinitary permutation matrix lives inside B but not inside C.
• On the other hand, the linear transformation sending everything to the first basis vector lives

inside C but not inside B.

Similarly to B, it turns out that the double-centralizer of C with respect to the module V is the whole
ring A.

5. Back to the Artinian world

5.1. Semisimple finite-dimensional algebras over fields. Note: When we are considering alge-
bras over a field, the “world” of maps is the world of all k-linear maps, instead of all Abelian group
homomorphisms.

A finite-dimensional algebra over a field is an Artinian ring. More generally, if A is a k-algebra and
M is an A-module which is finite-dimensional as a k-vector space, M is Artinian as an A-module.

Thus, the entire classification that we did for semisimple Artinian rings, works for semisimple rings
that are finite-dimensional over their ground field. More can be said in this case: the mysterious “division
rings” we have are now all division rings which contain the base field in their center.

Now if the ring that we start out with is finite-dimensional over the ground field, then each of the
corresponding division rings we get is also finite-dimensional over the ground field, so the problem of
classifying all simple Artinian k-algebras reduces to the problem of classifying all division rings whose
center contains k, and which are finite-dimensional over k. In general, this could be a hard problem;
however, when k is algebraically closed, it’s a superbly easy problem: the only finite-dimensional division
algebra over k is k itself.

Thus, Artin-Wedderburn theory over an algebraically closed field k states that if A is a finite-
dimensional semisimple k-algebra, then A is a direct sum of matrix rings over k. This looks nice!

5.2. When the field is not algebraically closed. To take an illustration, consider the field R. R is
not algebraically closed: it has a quadratic extension C which is algebraically closed. The division rings
over R are R, C and the Hamiltonian quaternions, so any finite-dimensional semisimple R-algebra can
be expressed as a direct sum of matrix rings over R, C and the Hamiltonians.8

I’ll illustrate this (later on) with an example of the group algebra over R of the quaternions.
There is a more general construction paralleling the construction of the Hamiltonian quaternions,

called generalized quaternion algebras, which we again might come to later.

5.3. When the algebra is not assumed to be finite-dimensional. Just because A is a k-algebra
and A is an Artinian ring, does not imply that A is finite-dimensional as a k-algebra. For an easy
counterexample, consider C as a Q-algebra, or C(t) as a C-algebra. Thus, we have not really classified
all semisimple Artinian algebras over fields; we have classified only the finite-dimensional ones.

However, for algebraically closed fields, we can say something better: we have classified all the finitely
generated semisimple algebras over k. This is because the nullstellensatz actually tells us that any finitely
generated division ring over a field is the field itself.

6. Ring and module properties seen so far

Let’s take some time off to review the ring properties seen so far, and the implications among them.
First a list of the properties, along with some notes on how much left/right symmetry they possess.

When I say a property possesses left-right symmetry, I mean that a ring has the property iff its opposite
ring also does. This does not mean that the ring is isomorphic to its opposite ring:

8The Hamiltonians contains C as a subring, but is not a C-algebra because C is not in the center of the Hamiltonians.
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Property Left-right symmetry
Field Yes (commmutative)
Division ring Yes
Integral domain Yes
Simple ring Yes
Left-primitive ring No
Right-primitive ring No
Involutory ring Yes
Self-opposite ring Yes
Semisimple Artinian ring Yes
Artinian ring Yes
Local ring Yes
Completely primary ring Yes
IZ-ring Yes
Additively generated by invertibles Yes
Indecomposable ring Yes
Commutative ring Yes
Simple Artinian ring Yes
Matrix ring of order n Yes
Matrix ring over commutative ring Yes

It seems that apart from primitivity, all the notions we have defined have eventually been shown to
be left-right symmetric. This is more an indicator of the fact that we have remained in shallow waters,
than of any inherent left-right symmetry in most rings.

Let’s now look at the major implication chains (try coming up with counterexamples to the converse
of each implication):

(1) Field =⇒ Division ring: We only remove the hypothesis of commutativity
(2) Division ring =⇒ Integral domain =⇒ Indecomposable ring: This follows from the definitions.
(3) Division ring =⇒ Simple ring: We weaken from demanding the absence of left and right ideals,

to demanding the absence of two-sided ideals
(4) Division ring =⇒ Completely primary ring =⇒ IZ-ring: We successively weaken our demands

here. For division rings, every non-invertible element must be 0, for completely primary rings,
every non-invertible element must be nilpotent, and for IZ-rings, every non-invertible element
must be both a left and a right zero divisor.

(5) Division ring =⇒ Completely primary Artinian ring =⇒ Local Artinian ring =⇒ Artinian
ring: I’ve just thrown in an “Artinian” everywhere, since division rings are clearly Artinian.

(6) Completely primary ring =⇒ Local ring =⇒ Indecomposable ring
(7) Division ring =⇒ Simple Artinian ring =⇒ Semisimple Artinian ring
(8) Simple ring =⇒ Left-primitive ring: The forward implication uses the existence of maximal left

ideals. The converse implication is true under the additional assumption of Artinianness.
(9) Matrix ring over commutative ring =⇒ Involutory ring =⇒ Self-opposite ring

6.1. Module properties. Given a ring, we want to study properties of left modules over the ring. We
have so far seen the following properties for left modules: simple, semisimple, indecomposable, finite
length, indecomposable of finite length, semisimple of finite length, finitely generated. Let’s view the
relation between these properties:

(1) Simple =⇒ Isotypical =⇒ Semisimple: A semisimple module could be a direct summand of
more than one simple module. Isotypical modules are those semisimple modules which have only
one isomorphism type of simple module.

(2) Simple =⇒ Indecomposable: Simple modules are indecomposable. In fact a simple module is
the same thing as an indecomposable semsimple module.

(3) Simple =⇒ Indecomposable of finite length =⇒ Strongly indecomposable =⇒ Indecompos-
able

(4) Simple =⇒ Semisimple of finite length =⇒ Semisimple
(5) Finite length =⇒ Finitely generated: The converse implication holds if the module is semisim-

ple; it also holds if the ring is Artinian (the two conditions are fairly different in nature).
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Semisimple modules are those built horizontally from the simple building blocks: the building blocks
are laid one to the side of the other. Indecomposable modules are stacked vertically: each simple piece
is stacked on top of a previous one. Arbitrary modules could be stacked in a vertical-horizontal mix.

6.2. Correspondence between module properties and endomorphism rings. We have the fol-
lowing correspondence between properties of modules and properties of their endomorphism rings, first
seen in part 1:

Module property Implied endomorphism ring property Proof
Simple Division ring Schur’s lemma
Indecomposable of finite length Completely primary ring Fitting’s lemma
Strongly indecomposable Local ring (By definition)
Indecomposable Indecomposable ring (part 1)
Isotypical of finite length Matrix ring over division ring (part 1)
Semisimple of finite length Direct sum of matrix rings (part 1)

over division rings

7. Morita theory

Given a ring, one way to study it is to look at the “category” of its left modules, viz., the category
whose objects are left modules over the ring and whose morphisms are module homomorphisms. The
category of left modules of a ring captures some properties of the ring, but not all. In fact, it is the
ability of this category to “forget” some aspects of ring structure that is useful to us.

Definition (Morita-equivalent rings). Two rings R and S are termed Morita-equivalent if there is an
equivalence of categories between the category of left R-modules and the category of left S-modules.

By “equivalence of categories” we mean that there exist functors both ways such that the composite
both ways is equivalent to the identity functor via a natural transformation. Let’s explore this a little
more carefully, by the following theorem:

Theorem 11. Let R be any ring and n ≥ 1. R is Morita-equivalent to the matrix ring Mn(R).

The proof may seem unilluminating at this stage, so we’ll prove it as a special case of something more
general.

Theorem 12. Suppose A is a ring and e is an idempotent in A. Then eAe is a ring in its own right
(it is not a subring of A). Let M be a left A-module. Then if M is simple as an A-module, eM is simple
as an eAe-module.

Proof. The idea is that of “going up”: given an eAe-submodule N of eM , we prove that:

AN ∩ eM = N

Hence any proper nonzero eAe-submodule of eM gives rise to a proper nonzero A-submodule of M . �

Now let’s get back to business, with what’s called a decomposition of 1. In the matrix ring Mn(R),
we can decompose 1 as a sum of matrix elements eii where eii is 1 in the iith place and 0 elsewhere.
Each of these is an idempotent, and it cannot be expressed as a sum of idempotents.

Now if M is a Mn(R)-module, then we have:

M =
n∑

i=1

eiiM
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From the theorem above, each eiiM is simple as a eiiMn(R)eii-module, which is the same as a R-
module, with R acting only in the place eii. But this also implies that it’s simple as a R-module where
R acts as scalar matrices. The upshot is that if we view R as embedded inside Mn(R) as scalar matrices,
then M is a sum of simple modules over R; hence, M is a semisimple R-module. What we’ve proved is
thus:

Any simple Mn(R)-module is semisimple as a R-module, where R embeds inside Mn(R)
as scalars.

7.1. The hidden ideas. The reasoning in the previous part may seem abstruse, but there is something
very concrete going on. What we’re secretly doing is thinking of R as a field k, and M as the vector
space kn. In this case, we know that M decomposes as a direct sum of n copies of k (the choice of
decomposition is tantamount to a choice of basis upto scalar factors).

The problem is that we want to “abstractly” find a decomposition of M without knowing that it
actually “looks like” a vector space. So, we construct abstract analogues of the projection operators
by considering formally the subgroups eiiM where eii are the matrices with 1 in the iith place and 0s
elsewhere.

Of course, when R is not a field, Rn is certainly not a simple Mn(R)-module; rather, examples of
simple Mn(R)-modules would be Nn where N is a simple R-module. Nonetheless, the idea of projection
works.

7.2. Idempotent decompositions. We had earlier noted that a ring is indecomposable as a left module
over itself iff it contains no nontrivial idempotents. This leads to the natural question: what is the relation
between idempotents and decomposition of a ring into left submodules? Here’s the answer:

(1) A primitive idempotent(defined) is an idempotent in a ring which cannot be expressed as a sum
of two nonzero idempotents. The left ideal generated by a primitive idempotent is a minimal
left ideal; similarly, the right ideal generated by a primitive idempotent is a minimal right ideal.
Primitive idempotents may or may not exist.

(2) A central idempotent(defined) is an idempotent in a ring which commutes with every element
of the ring.

(3) Two idempotents are said to be orthogonal(defined) if their product is 0. Note that orthogonal
idempotents must commute. A sum of two orthogonal idempotents is again an idempotent.

Let’s return to Artin-Wedderburn theory. Artin-Wedderburn theory tells us that any semisimple
Artinian ring can be expressed as:

R = Mn1(D1)⊕Mn2(D2)⊕ . . .Mnr (Dr)

where each Di is a division ring. Then:
(1) Each Mni(Di) is a minimal two-sided ideal in R, and is generated by a central idempotent,

namely the element which is identity in that component and 0 elsewhere.
(2) The central idempotents are precisely the (0, 1)-linear combinations of the r central idempotents

given above. Thus, there are 2r of them.
(3) The central idempotent for the matrix ring Mni(Di) can be decomposed as a sum of ni primi-

tive, pairwise orthogonal idempotents. This decomposition is not unique, and is tantamount to
choosing a basis for the corresponding vector space.9 The ni idempotents are projections onto
each of the basis directions.

(4) Every minimal left ideal is generated by a primitive idempotent. Every left ideal is generated
by an idempotent (first write the left ideal as a sum of minimal left ideals, and then add up the
idempotents for each of them).

In general, primitive idempotents need not exist; it may be possible to keep decomposing an idem-
potent further and further. As an amusing example, let (X, µ) be a measure space. Consider the ring
L∞(X) of essentially bounded real-valued measurable functions on X (upto a.e. equivalence). This is
indeed a R-algebra. The idempotents in this R-algebra are the indicator functions of measurable subsets
of X. Then:

• Idempotents correspond to measurable subsets (upto a.e. equivalence): Any idempotent is the
indicator function of a measurable subset.

9One has to be a bit careful while dealing with division rings
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• Primitive idempotents correspond to measurable subsets of positive measure which do not contain
any measurable subset of strictly smaller positive measure.

Thus, for measure spaces where every set of positive measure contains a subset of strictly smaller
positive measure, there are no primitive idempotents. R is an example of such a measure space. Thus,
L∞(R) is far from Artinian.

7.3. Back to Morita-equivalence. We shall here show that under reasonably “nice” hypotheses, A is
Morita-equivalent to the ring eAe. Here A is a ring and e is an idempotent.

In particular it shows that any ring is Morita-equivalent to a matrix ring of finite order over it.

Theorem 13 (Morita theorem). Suppose e is an idempotent in a ring A such that AeA = A (viz the
two-sided ideal generated by e is the whole ring A). Then the rings A and eAe are Morita-equivalent.

This condition is readily satisfied for the matrix ring over any ring.
Here’s the intuition behind this (this intuition will turn useful when we look at quivers). The idea

is that eAe may in general be much smaller than A. However, if AeA = A, then e “generates” A as a
two-sided ideal, which means that A looks like a whole lot of copies of eAe, joined to each other such
that all the copies look more or less the same. Thus collapsing A to eAe is a bit like collapsing an entire
equivalence class into a single representative of that class.

8. A little more of non-Artinian ring theory

We shall now revisit lovely examples like the Weyl algebra that we constructed earlier, in a little more
general light, and also see just how good or bad they can get.

8.1. Failure of the double-centralizer property. The Jacobson density theorem tells us that if the
module at hand is a simple module over the ring, then the ring is dense in its double-centralizer. Thus
there are two ways in which the double-centralizer property can fail:

• The module is not simple over the ring: For instance, the vector space kn over the ring of upper
triangular matrices.

• The module is simple over the ring but is infinite-dimensional: A few sections ago, we saw many
examples of dense subrings of the ring of all linear transformations from a countable-dimensional
vector space to itself. These dense subrings are examples of subrings that do not have the
double-centralizer property.

8.2. Subrings with the double-centralizer property. Let me make a few more comments. When
k is not algebraically closed, there are examples of subrings of Mn(k) which have the double-centralizer
property with respect to kn, namely, field extension of k. For instance, when k = R and n = 4, the
subring M2(C) of M4(R) has the double centralizer property, and so does the subring corresponding to
the Hamiltonians.10

In essence, any subring of Mn(k) which has the double-centralizer property must, by the Artin-
Wedderburn theorem, “look like” a matrix ring over a division ring. In particular when k is algebraically
closed, any subring of Mn(k) which has the double centralizer property must “look like” a smaller matrix
ring over the same field. Here are some examples. In M4(C), we can embed C as scalar matrices. We
can also embed M2(C) as block scalar matrices, where each 2-by-2 matrix is a scalar. In general:

Suppose Mnd(C) is a matrix ring, where n, d ∈ N. Then, we can embed Mn(C) in
Mnd(C) as block scalar matrices. Cnd is a semisimple module for the embedded Mn(C):
it is a direct sum of d simple modules. Moreover, the embedded Mn(C) has the double-
centralizer property.

The particular case n = 1 yields the scalar matrices embedded inside the matrix ring. The case d = 1
yields the whole matrix ring.

10The “the” is misleading. There are many possible choices.
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8.3. The Weyl algebra. We already constructed examples in the infinite-dimensional case of dense
subrings which do not satisfy the double-centralizer property. The idea here is that as far as finitely
many elements can tell, there are enough linear transformations; however, there are not enough lin-
ear transformations to move infinitely many elements the way we please. We will now try to revisit
some algebras we touched upon in part 1, and verify whether these algebras have the double-centralizer
property.

Recall that for any ring R, we can define its algebra of differential operators as the algebra generated
by all R-module maps from R to itself, generated by left multiplications and derivations. When R is the
polynomial ring in one variable over k, we recover precisely the Weyl algebra k〈x, y〉/〈〈xy − yx − 1〉〉.
When R is the polynomial ring in many variables, we require a corresponding multi-variable analogue of
the Weyl algebra.

Although we did not view it that way, the Weyl algebra can be viewed as a subring of the ring of
all linear maps from k[t] to itself. This is a countable-dimensional vector space, hence we can represent
linear maps by column-finite matrices. In this language, the multiplication operator corresponds to a
matrix with a 1 in the subdiagonal and the differentiation operator corresponds to a matrix with entries
1, 2, 3, . . . in the superdiagonal. The Weyl algebra is thus a subalgebra of the algebra of all k-linear
transformations, generated by the subdiagonal matrix and the superdiagonal matrix.

It can once again be checked that the centralizer of the Weyl algebra is precisely the algebra of all
scalar multiplications, and hence its double centralizer is the whole of A. We can also see, more directly,
that the Weyl algebra is dense in the ring of all linear transformations: given finitely many source and
target polynomials, it is possible to explicitly write down a differential operator which sends each source
polynomial to its corresponding target polynomial.

I list some more facts (when k has characteristic 0). Most of these facts can either be proved directly
or can be easily proved using the idea of Lie ideals mentioned in part 1:

• The Weyl algebra is simple. We proved this earlier.
• The Weyl algebra is involutory. The exchange mapping of x and y is an involution.
• The Weyl algebra does not have finite length as a module over itself (because it’s non-Artinian).

Hence it is not semisimple over itself, because any semisimple finitely generated module must
have finite length (we proved this right at the start).

• The Weyl algebra is an integral domain in the noncommutative sense: it has no zero divisors
other than 0. Hence it is very far from being an IZ-ring.

• The Weyl algebra is non-Artinian, because it’s not an IZ-ring. Recall that we had proved that
any Artinian ring is IZ.

• The center of the Weyl algebra is precisely k. Moreover, any invertible element is in the center.
In fact every invariant element is in the center. Thus the Weyl example is an example of an
algebra which is not additively generated by its invariant elements. (these statements are proved
easily using the notion of Lie ideals developed in part 1).

• The Weyl algebra is a typical illustration of the spectral theorem of Amitsur: every element
which is not scalar is transcendental, and hence for most elements, the spectrum is the whole
field.

8.4. The translation ring. The translation ring was defined as k〈x, y〉/〈〈xy − yx− x〉〉. In Part 1, we
did not give a rationale as to the importance of this ring. Here are some contexts in which the translation
ring comes up (none of them is relevant for our purpose, but I list them for completeness):

• The translation ring is the universal enveloping algebra of the Lie algebra with two generators x
and y over a field k, governed by the relation [x, y] = x.

• The translation ring is the skew polynomial ring over k[y] corresponding to the “shift” automor-
phism y 7→ y + 1. More concretely, the translation ring can be viewed as acting on k[t] with y
acting as multiplication by t, and x acting as the automorphism induced by t 7→ t + 1.11

• The translation ring occurs as deformations of the Weyl algebra. For instance, the algebra
k〈x, y〉/〈〈xy − yx− cx− 1〉〉 can, by change of variables, be viewed as a translation ring.

We proved that any nonzero ideal in the translation ring must contain a power of x.
Here are some interesting facts about the translation ring:
• The element x is an invariant element: The left ideal and right ideal generated by x are equal.
• The translation ring is involutory. The involution is y 7→ −y.

11For a general theory of skew polynomial rings, refer “Abstract Algebra and Applications” by P. M. Cohn, Section 7.3
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• k[t] is a faithful simple left module over the translation ring. Here y acts as multiplication by t
and x acts as the ring automorphism of k[t] induced by the map t 7→ t + 1.

• Thus the translation ring is a left-primitive ring. Since it is involutory, this also shows that it is
right-primitive. However, it is not simple.

• If M is a non-faithful simple module over the translation ring, then xM = 0. To see this, note
that xM is a submodule of M , and thus either xM = 0 or xM = M . Further since M is not
faithful, its annihilator is a nonzero two-sided ideal, and hence must contain some power of x,
forcing xnM = 0 for some M .

• Thus if M is a non-faithful simple module over the translation ring, it descends to a module over
the polynomial ring k[y].

8.5. The intuition so far. What we have seen so far should convince us that in the infinite-dimensional
case:

• There are a whole lot of primitive rings which aren’t simple. Primitivity simply requires that we
should have a faithful simple left module.

• Most of the rings we see do not have the double-centralizer property. They are in fact dense in
the ring of all linear transformations. Their centralizers are only the scalar transformations, and
their double centralizer is usually the ring of all linear operators.

• Even those rings that happen to be simple, are usually very far from being Artinian. The prime
example is the Weyl algebra, which, though simple, is not Artinian, and is hence not semisimple
as a module over itself.

9. Quivers and representation theory

9.1. A quick look at quivers. The matrix ring over a field is the ring of all linear maps from a vector
space over the field to itself. We can alternatively think of each map from the vector space kn to itself,
as follows:

• Make n labelled copies of k. This corresponds to a direct sum decomposition of kn in terms of
n one-dimensional spaces.

• View any linear map from kn to kn as specifying a homomorphism from each labelled copy of
k to each labelled copy of k. Thus, there are n2 linear maps between one-dimensional vector
spaces that give rise to the single linear map from kn to kn.

Thus we may try to draw the matrix ring by making n vertices and a directed edge from every vertex
to every vertex (this includes n loops and n(n − 1) edges between distinct vertices). Specifying an
element of the matrix ring is equivalent to specifying, for every edge, a homomorphism from its source
to its target. Adding two elements of the matrix ring involves adding the homomorphisms on each edge.
Composing two elements of the matrix ring corresponds to composing the homomorphisms graphically
along the edges.

In other words, we are viewing the matrix ring as the direct sum of the homomorphism groups between
one-dimensional vector spaces, with the multiplication given by composition.

We already did something like this (in reverse) long ago, when we showed that the endomorphism
ring of an isotypical component is a matrix ring over the endomorphism ring of the associated simple
module.

The problem with this model is that the picture is too messy: we have an edge betwee any two vertices,
and we have a lot of relations of the form: a product of two edges gives a third edge. What we’d ideally
like is a situation where there are as few explicit edges as possible, and the elements of the ring are really
obtained as composites of edges. Such a theory is incapable of representing rings of the complexity of
matrix rings, because in such a ring there are many ways of going back and forth. However, we can
represent rings upto “Morita-equivalence”, and the matrix ring over a field is Morita-equivalent to the
field itself.

A little note about the “upto Morita-equivalence” business. When we will draw a quiver which
represents a ring upto Morita equivalence, what we’re really doing is this: we’re hiding the deeper
complexity inside each vertex.

9.2. A quiver and its path algebra.
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Definition (Quiver, path algebra). A quiver(defined) is a finite directed graph. The path alge-
bra(defined) Path (Q) of a quiver Q over a field k is defined as follows:

• As a vector space, Path (Q) has basis all the paths in Q. A path of length 0 is a single vertex;
in general a path of length r is a sequence of r directed edges such that the head of each is the
tail of the next.

• The product of two paths is 0 if the head of the first does not match up with the tail of the
second, and is the path obtained by concatenating them if the head and tail do match up.

Let’s try drawing some quivers, and seeing what their path algebras look like:
(1) The quiver with one vertex and no paths is k itself.
(2) The quiver with one vertex and r loops at that vertex is the free associative algebra in r variables.
(3) The quiver with r vertices and no edges is kr as a r-algebra.
(4) The disjoint union of two quivers has as its path algebra the direct sum of the path algebras for

each of them.
(5) The quiver which is a straight-line graph has as its path algebra the ring of upper triangular

matrices over a field. The vertices correspond to the projection operators on each of the basis
elements, and the edge from vertex i to vertex i− 1 is the basis element ei−1i.

9.3. Obtaining an algebra as a path algebra. A natural first question: which k-algebras can be
obtained as path algebras for quivers? The first thing to note is that a path algebra cannot encode any
algebraic extensions. Hence, if we want to have any hope of representing a reasonable fraction of all
k-algebras as path algebras, we should choose k to be algebraically closed. This will avoid having to
think about impossible problems like trying to represent C as a path algebra over R.

The second thing to note is that algebras like the matrix algebra, which have a lot of “circular”
relations, again have no hope. However, we know that whenever an algebra has a lot of transitivity and
a lot of circularity, it is likely to be Morita-equivalent to a more tractable algebra. Indeed, the matrix ring
is Morita-equivalent to the underlying field, and hence a direct sum of matrix rings is Morita-equivalent
to a direct sum of fields, which we know how to represent.

The third thing to note is that however nice the algebra, it is unlikely that all its relations can be
coded into something as naive as a path algebra. The best we can hope for is to say that the algebra is
a path algebra, modulo a sufficiently “small” ideal.

We can now state the grand theorem of quivers.

Theorem 14 (Grand theorem of quivers). Suppose k is algebraically closed and A is an Artinian
k-algebra. Then there exists a quiver Q and a homomorphism from Path (Q) to A whose kernel lives
inside the ideal generated by paths of length 2. Moreover, the quiver Q is unique (upto isomorphism).

For semisimple Artinian rings, the quiver is just a discrete set of points, where the number of points
is the number of minimal two-sided ideals (or number of simple summands, with multiplicity). In this
case, since there are no paths at all, the ideal we are quotienting out by is the zero ideal; on the other
hand, the ideal we are quotienting out can also be described as the entire ideal of paths of length at least
2.

For non-Artinian rings, the construction of the quiver is using the “top”; however, actually realizing
the given algebra as a quotient of a path algebra by an ideal involves some hardwork. I won’t do all
the hardwork, but will develop the main idea behind it, and then take yet another foray into interesting
stuff.

9.4. The idempotent-lifting property. This question might seem a bit artificial if asked in isolation,
but it has concrete motivation from quivers, and in fact from many other contexts:

Definition (Idempotent-lifting property). Suppose R is a ring and A is an additive subgroup of R.
Then A is said to have the idempotent-lifting property(defined) in R if whenever e ∈ R is such that
e2 − e ∈ A, there exists e′ ∈ R such that e′2 = e′ and e′ − e ∈ A. In other words, idempotents can be
lifted modulo A.
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We shall largely be interested in the problem of lifting elements modulo ideals.
Some obvious candidates for ideals with the idempotent-lifting property are direct summands. Here’s

a claim:

Claim. Suppose R = A⊕B where A and B are two-sided ideals in R. Then both A and B have the
idempotent-lifting property in R.

The proof is direct, and shows in particular that the whole ring and the 0 ideal both have the
idempotent-lifting property.

It is also true that if we take a prime ideal in a commutative ring, then any idempotent modulo that
ideal must lift to an idempotent in the whole ring. Specifically, this is because if the equation e(e−1) = 0
mod I where I is a prime ideal, then either e = 0 mod I or e− 1 is 0 mod I. In the former case we can
choose e′ = 0; in the latter case we choose e′ = 1.

On the other hand, ideals in Z or k[x] usually do not have the idempotent-lifting property. In other
words, there may be solutions to the polynomial equation x2− x = 0 in the quotient by an ideal that do
not lift to the whole ring. For instance, 42 − 4 is 0 mod 6, but 4 does not lift to an idempotent in Z.

Theorem 15 (Nilpotent ideals have idempotent-lifting property). Any nilpotent left ideal in R (and
more generally, any nil left ideal in R) has the idempotent-lifting property.

This is funny, because the collection of ideals which satisfy the idempotent-lifting property certainly
seems a funny collection: it contains all two-sided ideals which have complements (as two-sided ideals),
it contains all prime ideals (which in the noncommutative case would translate to ideals for which the
quotient ring is an integral domain), and it contains all nilpotent ideals.

9.5. Relevance of idempotent-lifting. Starting with an Artinian algebra A over a field k, we can
look at its top, and construct the quiver associated with that. This is just a discrete set of points, with
no edges. We now need to “fill” in the edges based on relations that live a little below. The hope is
that we can completely model behaviour that goes in in the ring A/(J(A))2 by throwing in appropriate
edges.

Let’s go over this more carefully. Start with any Artinian k-algebra A, where k is algebraically closed.
Consider the ring B = A/J(A). Then B is a direct sum of matrix rings over k, as follows:

B = Mn1(k)⊕Mn2(k)⊕ . . .⊕Mnr (k)

Now pick a primitive idempotent pi in each Mni(k). Let p be the sum of the pis. Then B is Morita-
equivalent to pBp, and pBp = kn. And for kn our quiver would just be one point for each pi, with no
edges. So we’ve got a quiver whose path algebra is Morita-equivalent to B.

Unfortunately, we are far from done, because we wanted something whose path algebra is Morita-
equivalent to A. The hope is that a Morita equivalence on “top” gives rise to a Morita-equivalence on
the whole thing. Indeed, this hope is justified, and the first step towards justifying it is the following
amazing fact:

We can find a collection of idempotents qi in A such that qi mod J(A) gives pi for every
i, and such that the qi are primitive pairwise orthogonal idempotents in A.

The result we obtained in the previous subsection can prove this partially. Since A is Artinian, J(A)
is nilpotent, so we can lift each pi individually to an idempotent in A. However, it is not clear that we
can simultaneously ensure that the pis can be lifted in a way that the lifts are pairwise orthogonal; this
requires some proof.

Assume that it can be done. Then let q be the sum of the qis. Clearly q is an idempotent, and it
turns out that AqA = A. Thus, we obtain that A is Morita-equivalent to qAq. Moreover, the Jacobson
radical of qAq is precisely pBp, a direct sum of fields.

The argument above “shows” that a Morita-equivalence on top does give a Morita-equivalence through-
out.
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9.6. Constructing the paths. We may assume from now on that the top of A is a direct sum of copies
of k (because if not, we can repeat the painful construction above to get a Morita-equivalence with an
algebra for which the top is a direct sum of copies of k). The next step is to draw the paths of the quiver.
The paths are determined by what goes on in J(A)/J2(A).

To gain some intuition, let’s revert to the “familiar” case where A is the ring of upper triangular
matrices over k. In this case, the paths were determined by matrices of the form e(i+1)i.

Now, J(A) is the strictly upper triangular matrices, and Jr(A) is the ideal of matrices which are
pushed r places up-right of the diagonal. So the paths that we constructed lived in J(A) but outside
J2(A), and this is the general idea: we look at J(A)/J2(A) to tell us what paths to draw.

Here is a rough sketch of the plan:
• View A/J(A) as an A-module. In fact, A/J(A) is a vector space over k, and A acts as k-linear

transformations over it.
• For every element in J(A), consider the induced linear transformation on A/J(A). This can

be viewed as a combination of n2 linear maps, one for every pair. However, it turns out that
J(A)/J2(A) can be given a suitable basis as an A/J(A)-module for which the induced operations
“look like” paths. I’m not sure of the precise details; this is meant to be only a rough sketch.

If I have time, I will add stuff on group representation theory, and how it ties up with various facets.
I will also develop the examples a bit better, and indicate more correlations.
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