
CONSTRUCTION PROBLEMS

VIPUL NAIK

Abstract. In this article, I describe the general problem of constructing configurations subject to
certain conditions, and the use of techniques like “greedy algorithms” to construct such configurations

1. The pivotal role of construction problems

1.1. Construction, existence and enumeration. The general situation of combinatorics could be
summarized as follows: We are given a general kind of configuration and we are asked to determine
whether there are any configurations of that general kind that satisfy certain particular constraints. We
could have:

(1) The construction problem which asks for an algorithm or method to construct a configuration
satisfying the constraints

(2) The existence problem which simply asks for an answer to whether a configuration exists
(3) The enumeration problem which asks for the total number of configurations

Skill at solving the construction problem helps both with the existence problem and the enumeration
problem, as follows:

• If we are able to actually construct a configuration, we can in particular prove that it exists.
• If we are able to devise an algorithm that constructs all configurations, and we can measure the

number of times that algorithm outputs a configuration, then we have counted the number of
configurations.

Thus, construction problems in combinatorics, apart from being important in their own right, also
help with existential and enumeration problems.

2. Construction by induction

2.1. Construction by induction: the idea. Let Cn be the set of all configurations of “size” n. Then,
construction by induction uses a listing of the elements of Cn−1 to obtain a listing of the elements of Cn.

There are two possibilities for this. One is that we first pick a configuration of “size” n − 1 (that is,
an element of Cn−1) and then make some further choices and decisions to obtain a configuration of size
n (that is, an element of Cn). Note that since we could make these choices in multiple ways, we may
have more than one configuration of size n corresponding to the configuration of size n− 1.

The other approach is to start off with a (as yet unspecified) configuration of size n, make some choices
and decisions and then reach the situation where we have to choose a configuration of size n− 1.

Let’s look at each of these methods.

2.2. Top-down construction. In a top-down construction, we start with trying to construct the con-
figuration of size n, make a few choices, and then reach down to the situation where we have to select a
configuration of size n− 1.

Let’s take the example where the “configuration” of “size” n is an arbitrary permutation of the set
{1, 2, . . . , n}. In this context, Cn is the set of all permutations on n letters, while Cn−1 is the set of all
permutations on n− 1 letters.

A permutation here is described by a “word” with the first letter being where 1 goes, the second letter
being where 2 goes, and so on. Thus, the elements of Cn are words of length n (with all letters distinct
and drawn from 1 to n) while the elements of Cn−1 are words of length n − 1 (with all letters distinct
and drawn from 1 to n− 1).

Then, in order to describe a particular configuration of size n, we start out by specifying the first
letter (that is, the image of 1 under the permutation). There are n choices for this. Once we have made

c©Vipul Naik, B.Sc. (Hons) Math and C.S., Chennai Mathematical Institute.

1

this choice, we can strip off the first letter and get a word of length n − 1 with distinct letters drawn
from 1 to n, except the first letter.

The number of ways of choosing such words equals the numbers of ways of choosing words of length
n− 1 with letters drawn from 1 to n− 1 (by simply relabelling). This corresponds to the cardinality of
Cn−1, and we get:

|Cn| = nCn−1

Top-down approaches are typically more local in nature since the initial local choices have to be made
before fixing the configuration of size n − 1. In other words, when following a top-down approach, we
cannot a priori know the global impact.

In the case of permutations that is not a problem, because whatever choice we make for the first letter,
the behaviour for the remaining n− 1 letters is qualitatively similar.

2.3. Bottom-up construction. In bottom-up construction, we start by constructing the configuration
of size n− 1, and then from that we proceed to construct the configuration of size n.

That is, for very element c ∈ Cn−1 we try various ways of augmebnting c to obtain an element of Cn.
Bottom-up approaches are typically more global in nature since here the local choices have to be made

after fixing the configuration (hence we can make them more intelligently).

3. A bottom-up problem: convolutions

3.1. Problem statement. Here’s a (rather hard) problem which is best solved bottom-up:

Problem 1 (Romanian TST 2002). Consider words of length n in four letters: a, b, c and d. Define
a convolution in a word as a contiguous repetition of the same block, for instance aa is a convolution and
so is abab. Call a word convolution-free if it does not contain any convolutions. Prove that the number
of convolution-free words of length n is at least 2n.

3.2. Exploration of this problem. We first set this problem within the framework of “configurations”
and “constraints”:

• The configurations here are the strings of length n with letters drawn from a, b, c and d
• The constraint is that of being convolution-free, viz there is no convolution anywhere in the word.

We want to show that there are lots of configurations (namely at least 2n) of length n.
In order to use induction, let’s first try to understand how convolution-free words of length n are

related to convolution-free words of smaller length. :
• Let w be a string of length n and v be a contiguous substring of w. Then any convolution in v

gives a convolution in w.
• Hence, if w is convolution-free, so is every contiguous substring of w.
• In particular, if w is convolution-free, then the substring obtained by stripping off the last letter

of w, is also convolution-free.
This means that to construct all the convolution-free words of length n, it suffices to first construct

all convolution-free words of length n− 1, and then try each of the four possibilities for the last letter.

3.3. Some notation. For our convenience, we’ll let Cn denote the set of all convolution-free words
of length n, and Dn denote the set of all words of length n whose initial segment of length n − 1 is
convolution-free.

To be able to manipulate strings (words) effectively, we’ll define the following notation for substrings.
Whenever n ≥ m+k−1, define im,k as the map that takes a string of length n and outputs the contiguous
substring of length k starting at the mth place. Then, the fact that every contiguous substring of a
convolution-free word is convolution-free, can be expressed via the fact that im,k maps Cn to inside Ck.

3.4. How many will work? Here’s the question: given a convolution-free word of length n − 1, how
many possibilities are there for the last letter so that the new word is again convolution-free?

Answer: It could be as large as 3 and as low as 0.
For instance, if the word so far is abc, then any of the letters a, b, or d can be added.
On the other hand, if the word so far is babcbabdbabcbab then none of the letters works.

2

3.5. What’s the algorithm? Let’s look again at the procedure for obtaining convolution-free words of
length n.

• First, list all the elements of Cn−1, viz all the convolution-free words of length n− 1.
• Using this, list all the elements of Dn. Recall that Dn is the set of words of length n whose initial

segment of length n− 1 is convolution-free. |Dn| = 4 |Cn−1| because all we do is try appending
each of the four letters to each element of Cn−1.

• Try every word that arises by attaching a letter at the end to a convolution-free word of length
n− 1. For this word, check that it is convolution-free.

If the initial segment of n− 1 letters is convolution-free, then any convolution in the new word must
have been introduced by the last letter – hence one of the blocks must contain the last letter. This forces
the following picture:

The last k letters are a repeat of the k letters just before them (here k ≤ n/2).
Put in symbols, this is the same as:

∀ w ∈ Dn \ Cn,∃k ≤ n/2 such that im−2k+1,k(w) = im−k+1,k(w)

Let’s think of it as a filter. We send to this filter an element in Dn. The filter checks, for each k, if the
last k letters are a repeat of the k letters that come before them. If this happens, the word is “filtered
out” by the filter.

Thus, to find out how many candidates get filtered in, we can calculate how many candidates get
filtered out.

Let Fn denote the set of candidates that are filtered out by this process. In other words, Fn = Dn\Cn.
Then, we have:

Fn =
⋃

1≤k≤n/2

Fn,k

where Fn,k is the set of those candidates that are rejected because the last k letters are a repeat of
the k letters before them.

In symbols:

Fn,k = {w ∈ Dn|im−2k+1,k(w) = im−k+1,k(w)}

3.6. Cardinality bounding. To get a bound on the size of Fn, it suffices to get a bound on the size of
Fn,k for each k. Let’s look closely at a word w ∈ Fn,k.

By assumption, the initial segment of w of length n − 1 is convolution-free, hence, since k ≥ 1, the
initial segment of w of length n − k is convolution-free. Further, once we fix the first n − k letters, the
last k are anyway fixed (since they are a repeat of earlier letters). Hence, we have an injective map:

i1,n−k : Fn,k → Cn−k

which just strips the last k coordinates.
In particular:

|Fn,k| ≤ |Cn−k|

Thus:

|Fn| ≤
∑

k

|Fn,k|

=⇒ |Fn| ≤
∑

k

|Cn−k|

=⇒ |Cn| ≥ |Dn| −
∑

k

|Cn−k|

=⇒ tn ≥ 4tn−1 −
∑

k

tn−k

3

3.7. The final step.

Claim. For any n ≥ 2, tn ≥ 2tn−1

Proof. Let us assume that the result holds inductively. Then we have:

tn−1 ≥ 2tn−2 ≥ 22tn−3 . . .

Thus in general:

tn−k ≤
tn−1

2n−1−k

Plugging this in the inequality for tn, we get:

tn ≥ 4tn−1 − tn−1(1 +
1
2

+
1
22

. . .)

=⇒ tn ≥ 4tn−1 − 2tn−1

=⇒ tn ≥ 2tn−1

We are using lots of loose inequalities here (for instance, the actual summation is only a finite one but
we are extending it to an infinite summation so that we can apply the formula for summing a geometric
progression). �

3.8. Learning and value from this proof. This proof brings out many ideas:

(1) The nature of the constraints and dependencies encourages a bottom-up construction: In the
problem of finding convolution-free words, a top-down approach is less natural, because there are
lots of dependencies (in fact, there are dependencies all over the place). Hence, it is hard to make
one’s initial choices wisely without knowing how the rest of the word looks like. A bottom-up
approach, where one starts off with a convolution-free word of length n−1 and then tries to plug
in the last letter, thus takes the dependencies into account more effectively.

(2) For any specific configuration of size n − 1, we cannot predict how many configurations of size
n we can construct from it. However, we can count (or at least bound) the total number of
configurations that get rejected.

(3) When trying to prove a lower bound on a combinatorial quantity, it is sometimes more helpful
to inductively prove a lower bound on the growth rate. For instance, in this problem, we started
off with trying to prove tn > 2n, but found it easier to prove that tn ≥ 2tn−1.

4. Greedy algorithms for existential problems

4.1. The core idea. Suppose we have a notion of configurations for every size n, and we are asked to
determine whether there exists a configuration of that size n. Then, the top-down approach will say:
make some initial choices, and then come down to the problem of constructing a configuration of size
n− 1.

Suppose now that there does exist a configuration of size n. Then there are two possibilities:

• Our initial choices are wise and they help us hit a configuration
• Our initial choices are unwise and they do not help us hit a configuration

On the other hand, suppose there does not exist a configuration of size n. Then there is only one
possibility: our initial choices do not help us hit a configuration.

Thus, if our initial choices lead to a correct configuration, we have solved the existence problem
positively. However, if our initial choices do not yield a correct configuration, we cannot be sure whether
or not there exists a correct configuration. The problem is that our initial choices may have been bad.

This leads us to the question: Can we use some local heuristic to ensure that our initial choices
are always the best, that is, that if there is a correct configuration, then there will also be a correct
configuration yielded by our initial choices?

4

4.2. The notion of local heuristics. The Knight’s Tour Problem is as follows: Given a starting
position of a knight on a chessboard, make the knight “tour” the entire board, using knight’s moves,
visiting each square exactly once.

Here, at every stage ,we have to decide, based on local criteria, where the knight should move next.
Can we evolve a local heuristic that will tell us what move of the knight is best? One possible local
heuristic is Warnsdorff’s rule, which works well for boards of smaller size. The idea of this rule is to
always go to that neighbour which has the least number of neighbours.

The problem in general is to determine a suitable local heuristic that guarantees good results. Of
course, an ideal local heuristic is one where we have the following guarantee:

There exists a configuration if and only if there exists a configuration using the local
heuristic.

Algorithms which use such smart local heuristics are termed greedy algorithms.

4.3. Why Warnsdorff’s rule works. Let’s look again at Warnsdorff’s rule to understand why it works
for boards of small size.

Warnsdorff’s rule uses the local heuristic of giving priority to the most lonely square among the
neighbours (viz the square with the minimum number of free neighbours). The reason why this is
important is as follows. Suppose there is a neighbour (in the knight’s move sense) with only one more
free neighbour. If the knight does not move to this neighbour now, then the only way it can visit the
neighbour in the future is through the other neighbour. But in that case, it can’t come out.

In commonsense language: if you want everybody to survive, you have to help the most needy. In the
same way, if you want to cover every square, you should give priority to the squares that have a chance
of being blocked off or getting isolated.

We shall see the same idea in the problem in the next section.

5. An interesting problem

5.1. The tiling problem.

Problem 2 (IMO 2001 shortlist). Let m < n be positive integers. Call a three-element subset T of
N a tile if it is either of the form {x, x + m,x + m + n} or of the form {x, x + n, x + m + n}. Prove that
N can be expressed as a disjoint union of tiles.

5.2. Thinking of the problem in terms of choices. Call an expression of N as a disjoint union of
tiles a tiling(defined) of N. The idea is to view a tiling as a sequence of choices that we need to make.

Let’s do this from start to end. Since 1 is a member of some tile, and since there is no natural number
smaller than 1, that tile could be either of the form {1, 1+m, 1+m+n} or of the form {1, 1+n, 1+m+n}.
Thus, we have a choice for 1.

Once we have fixed some of the tiles, we have to proceed to decide tiles for the smallest untiled number.
Let l denote the smallest untiled number at any stage. Then, to obtain a tile fitting l, we must either
choose {l, l + m, l + m + n} or {l, l + n, l + m + n}. Thus, at every stage, we have two choices. (It may
so happen that one or both of them is not available to us for some values of l).

What local heuristic should we use to determine which choice to take at each stage, so that we always
have at least one choice?

5.3. Which one is preferable? Let us call a tile of the form {x, x + m,x + m + n} a short tile(defined)

and a tile of the form {x, x + n, x + m + n} a long tile(defined). The question: in the start, what tiles
should we use: short tiles or long tiles?

Clearly, if we use the long tile first, we may run into a blockage issue. For instance, suppose we
consider m = 1, n = 2. Then if we use the long tile at 1, we cannot fit any tile at 2.

The problem is very similar to that in the knight’s tour:

• In the knight’s tour, if we miss out on the vertices which have low degree, then they get trapped
forever.

• In the tiling problem, if we indiscriminately use the long tile, we miss out on the small numbers
and they get trapped forever.

5

Hence, it makes sense in general to use the short tile. What kind of results does this heuristic
guarantee? Let’s first precisely formulate the heuristic:

At any stage, after having placed i tiles, let l be the least number that is not a member
of any tile. Then, if the short tile can be fit to l, fit it. Otherwise fit the long tile to l.

5.4. Proof that it works. We need to show that at every stage, either the short tile or the long tile
must work. So suppose, for a given l, the short tile doesn’t work. Clearly, l +m+n cannot be a member
of any tile, because by our inductive construction, the smallest member of any tile so far has to be less
than l.

We need to show that at every stage, we can choose either the short tile or the long tile. In fact, we
will show that at every step, we can choose the long tile as long as we have been following the heuristic.1

Some observations:
(1) By the inductive construction, there is no tile that starts beyond l.
(2) The short tile and the long tile starting at any value j differ only in the presence of j +m versus

j + n. Thus, if we were unable to choose the short tile and managed to choose the long tile, the
only reason could be that j + m was already a member of some tile.

In order to show that we can fit a long tile starting at l, it suffices to show that l + n has not yet
been tiled. Now given that n > m, l + n cannot be the middle member of an existing tile since that
would show that there are existing tiles which have a least value at least l, contradicting our inductive
construction (as per point (1) above). the only way that l+n could be tiled is if it is the largest member
of a tile, and hence it can be tiled only by a tile {l−m, l + n−m, l + n}. In particular, this means that
at l −m, we had chosen the long tile, and thus, the short tile at l −m was already blocked. This could
happen only if l = (l−m)+m was blocked, as per point (2) above. But this contradicts the assumption
that l is the smallest unblocked value.

6. Another problem to consider

Problem 3 (IMO 2003, Problem 1). Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}.
Prove that there exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x + tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

The configuration in this problem is a set S, and the constraint is that for distinct i and j, there
cannot exist distinct x and y in A such that x + ti = y + tj .

6.1. Making choices. How do we choose our set of tis? That is, how do we choose what is t1, t2, and
so on?

Let us say that the tis are in ascending order. Then, selecting t1 first means selecting the smallest
element of the set of tis. Then, selecting t2 means selecting the second smallest of all the tis. And so on.
At any stage, if we have already selected t1, t2, . . . , ti, then selecting ti+1 means selecting the smallest
among the other elements.

Now, we want to pick as many as 100 elements, so the idea is to try to pick the elements as small as
possible. This means that having fixed t1, t2, . . . , ti, we should try to pick for ti+1 the smallest number
which is feasible. What is the smallest number that is feasible? Clearly, a number that has not been
blocked.

Now, if we can obtain an upper bound M on the number of values that have been blocked, then the
smallest unblocked number is at most M + 1.

How many values are blocked? Clearly, numbers of the form x + tj − y where x, y ∈ S and 1 ≤ j ≤ i.
Thus, even assuming that all the blocked numbers are distinct, we get an upper bound of i|S|2 on the

number of blocked numbers and this does the trick.
Actually some smarter counting of the number of blocked numbers will show us that we can restrict

ourselves to blockage of the form tj +(x−y) where x > y because the other numbers would already have
been blocked from some earlier source.

1This is analogous to saying that if we skimp whenever possible, we always have the flexibility to splurge; but if we
splurge whne we don’t need to, we may run into problems

6

7. A non-existence problem and some philosophy

7.1. The problem statement.

Problem 4 (Indian Selection Test 4, 2003). Consider any partition of the numbers {1, 2, . . . , 3n} into
three sets A, B and C, each of size n. Prove that there exist x ∈ A, y ∈ B, and z ∈ C such that one of
x, y and z is the sum of the other two.

This problem superficially looks very much the opposite of earlier problems: all earlier problems
required us to show that certain nice configurations exist, while this problem requires us to show that a
nice configuration does not exist.

However, the techniques for solving the problems remain very similar: we try to use blocking to show
that such a configuration cannot be attained.

7.2. Structure-finder and structure-avoider. Many combinatorial situations can be modelled as
follows. The aim is to construct a configuration that avoids a certain kind of structure. For instance,
in the previous problem involving xis and tjs, the aim was to construct a configuration that avoids a
collision between the xi + tjs. Similarly, the famous Ramsey problems such as finding graphs where no
m people know each other, and no n people know each other, we are trying to avoid certain subgraphs.

Configurations that avoid a structure can be modelled as follows:
• The structure-avoider is a player whose goal is to construct a configuration that avoids the

structure
• The structure-finder is a player whose goal is to, given any configuration, find that structure in

it
In this sense, both the structure-avoider and the structure-finder are constructive. The structure-

avoider’s constructive goal is to build the configuration, the structure-finder’s constructive role is to find
the structure.

For instance, in the problem of convolution-free words, the structure in question was a covolution
within the word and the structure-avoiding configurations were the convolution-free words.

7.3. Coming back to the present problem. In the present problem:
• The configurations are partitions of {1, 2, . . . , 3n} into sets of size n each
• The structure (to be avoided) is a triple (x, y, z), each from a different element of the partition,

such that one is a sum of the other two
• Thus, the structure-finder’s goal is to, given any configuration, find a triple satisfying the above.

The structure-avoider’s goal is to construct a configuration such that the structure-finder cannot
succeed.

In such a game, the structure-finder can best meet his/her goal by repeatedly asking the structure-
avoider questions. At each stage, the structure-avoider has to make compromises and weird choices, and
is finally pushed into a corner (viz a contradiction).

7.4. The game begins. A quick run of the first few steps:
• Without loss of generality, asume 1 ∈ A.
• Let k be the least element not in A. Thus, 1, 2, . . . , k− 1 ∈ A. Again, without loss of generality,

assume k ∈ B.
We now have a slight picture. Clearly, the presence of these elements constrains choices for the

structure-avoider. For instance:
• The structure-avoider cannot place consecutive elements in B and C, because 1 ∈ A. More

generally, the structure-avoider cannot place in B and C any two elements that are close by in
the sense that they differ by a value less than k.

• The strucure-avoider cannot place elements which differ by k in A and C.
Together, these two facts tell us that:

If m,m− 1 ∈ C, so are m− k,m− k − 1.
And this forces an infinite descent, leading to a contradiction.
Thus, no two consecutive elements are in C.

7

This forces that for any m ∈ C, m− 1 ∈ A. Thus, we have an injective map from C to A.
Moreover this injective map never takes the value 1 (because 2 ∈ A or 2 ∈ B). Thus, we have an

injective map from C to A that misses at least one value. Thus, |A| > |C| contradicting the fact that all
have equal size.

8. Techniques used: a summary

The summary provided here is only a summary of observations and techniques and general themes in
the problems discussed here, not a summary of general techniques for construction problems.

(1) To construct all configurations of size n, we can use inductive construction. The idea behind
inductive construction is to relate configurations of size n with configurations of size n − 1. In
some cases, we may also need to involve configurations of even smaller size (for instance, while
finding convolution-free words of length n, we involved convolution-free words of length smaller
than n− 1 as well).

(2) Inductive construction could be done in two typical ways. One is the bottom-up way where we
start with a configuration of size n − 1 and augment in such a way as to get a configuration
of size n. While augmenting we need to make sure that the new structure again satisfies the
constraints.

(3) Top-down coonstructions first start from trying to build a onfiguration of size n, and then reduce
it to building a configuration of size n − 1. The idea is that we first make some local choices
to reduce the problem to size n − 1. These constructions work well when the constraints are
sufficiently local in nature.

(4) When using inductive construction to get an exact or approximate count, it is important to
keep in mind that oen only needs to count the total number of configurations that satisfy the
constraints. It may so happen that for each configuration of size n − 1, we may not be able to
judge how many configurations of size n it will give rise to. However, we may still be able to
determine the total number of configurations by finding out how many get rejected in total.

We followed this approach for the problem of counting the number of convolution-free words.
(5) Top-down constructions are used in existential problems via the tool of greedy algoriths. A

greedy algorithm constructs a configuration by making a local choice at every stage such that, if
a configuration exists, then at each stage, the local choice gives rise to a valid configuration (the
local choices are thus never bad).

(6) For problems that involve covering everything (by means of touring, tiling or other similar con-
structions) the natural choice for a greedy algorithm is one that gives top priority to covering
the things that are likely to get isolated or left out.

We followed this approach for the knight’s tour problem, as well as for the touring problem.
(7) In some problems, we are required to construct configurations that avoid a certain kind of

structure. These problems can be viewed in terms of a game between two constructive players.
One player (the structure-avoider) is trying to construct a configuration that avoid the structure.
The other player (the structure-finder) is trying to find the structure in the configuration chosen
by the structure-avoider.

We saw this in the problem of partitioning a set into three sets each of equal size.
(8) When the structure to be avoided is a small local structure (for instance, one number being the

sum of the other two) then the structure-avoider can proceed by, at each stage, choosing the
least element that avoids the structure. For this, one needs to keep track of those choices that
are blocked and show that one can always find unblocked configurations?

Appendix A. More on convolution-free words

(1) Suppose the alphabet comprises m letters instead of 4. Mimic the proof for m = 4 to find a good
α for which it is true that the number of convolution-free words of length n is at least αn.

(2) For a positive integer m, defien the convolution-free growth-rate of m (denoted c(m)) as lim infn→∞ elog (tn,m)/n.
The problem we have with us shows that c(4) ≥ 2. Can we get a stronger lower bound of c(4)?
For instance, can we show that c(4) ≥ 1 +

√
5? What are the upper bounds on c(4)?

(3) What are the answers to similar questions for convolution-free cyclic words? A cyclic word is a
word written around a circle, and a convolution in a cyclic word is a repeating block of letters
that is not self-overlapping.

8

Appendix B. More on tiling problems

(1) Prove that for any m and n, there exists a positive integer N such that the greedy tiling procedure
tiles all the numbers from 1 to N . Further, show that the tiling is symmetric about N/2.

(2) Find an expression (or at least an upper bound) for N in terms of m and n.
(3) Using the fact that the tiling works for ntural numbers, prove that we can perform the tiling for

integers, and for rational numbers.

Appendix C. More on sum-freeness

We make two definitions:
• A subset S ⊆ N is termed a sum-free set(defined) if the equation x + y = z has no solutions for

x, y, z ∈ S (note that we allow solutions where x = y).
• A subset S ⊆ N is termed a Sidon set(defined) if the equation x + y = z + w has no solutions for

x, y, z ∈ S with x 6= z, x 6= w.
(1) Prove that for any N , one can find a sum-free subset of {1, 2, . . . , N} of size N/2 or (N + 1)/2

(depending on whether N is even or odd).
(2) Prove that for any N , one can find a Sidon subset of {1, 2, . . . , N} of size at least

√
N/8.

(3) Prove that there exists a sum-free subset S ⊆ N with the property that for any N , |S ∩
{1, 2, . . . , N} | ≥

√
(8N + 1)/4− 1/2.

(4) Prove that there exists a Sidon subset S ⊆ N with the property that for any N , |S∩{1, 2, . . . , N} | ≥
N1/3. Can the right side be made a bit better?

Appendix D. More on partitioning the set

(1) Prove that if the set {1, 2, . . . , n} is partitioned into three subsets each of which has size at least
n/4, then we can pick one element from each set such that one of them is the sum of the other
two.

(2) Prove that if A, B, C. D are four sets that form a partition of {1, 2, . . . , 4n}, each set having
size n, we can pick x, y, z, w, one from each set, such that x + y = z + w.

9

Index

long tile, 5

set

Sidon, 9

sum-free, 9
short tile, 5

Sidon set, 9

sum-free set, 9

tile

long, 5
short, 5

tiling, 5

10

	1. The pivotal role of construction problems
	1.1. Construction, existence and enumeration

	2. Construction by induction
	2.1. Construction by induction: the idea
	2.2. Top-down construction
	2.3. Bottom-up construction

	3. A bottom-up problem: convolutions
	3.1. Problem statement
	3.2. Exploration of this problem
	3.3. Some notation
	3.4. How many will work?
	3.5. What's the algorithm?
	3.6. Cardinality bounding
	3.7. The final step
	3.8. Learning and value from this proof

	4. Greedy algorithms for existential problems
	4.1. The core idea
	4.2. The notion of local heuristics
	4.3. Why Warnsdorff's rule works

	5. An interesting problem
	5.1. The tiling problem
	5.2. Thinking of the problem in terms of choices
	5.3. Which one is preferable?
	5.4. Proof that it works

	6. Another problem to consider
	6.1. Making choices

	7. A non-existence problem and some philosophy
	7.1. The problem statement
	7.2. Structure-finder and structure-avoider
	7.3. Coming back to the present problem
	7.4. The game begins

	8. Techniques used: a summary
	Appendix A. More on convolution-free words
	Appendix B. More on tiling problems
	Appendix C. More on sum-freeness
	Appendix D. More on partitioning the set
	Index

